Logo

Mathematical Sciences Research Institute

Home » MIP* = RE and the Connes’ Embedding Problem

Workshop

MIP* = RE and the Connes’ Embedding Problem May 08, 2023 - May 12, 2023
Parent Program: --
Series: Hot Topic, Hot Topic
Location: MSRI: Simons Auditorium, Commons Room, Atrium
Organizers Michael Chapman (New York University, Courant Institute), Anand Natarajan (Massachusetts Institute of Technology), William Slofstra (University of Waterloo), John Wright (University of Texas, Austin), Henry Yuen (Columbia University)
Description
This workshop is about the recent MIP*=RE result from quantum computational complexity, and the resulting resolution of the Connes embedding problem from the theory of von Neumann algebras. MIP*=RE connects the disparate areas of computational complexity theory, quantum information, operator algebras, and approximate representation theory. The techniques used in the proof of MIP*=RE, such as self-testing and probabilistically checkable proofs, are well-known in theoretical computer science and quantum information, but are unfortunately completely foreign in operator algebras and approximate representation theory. Likewise, the tools of operator algebras and approximate representation theory are mostly unfamiliar in theoretical computer science and quantum information. This has made it challenging to translate the MIP*=RE result and the techniques used to prove it into a form digestible to operator algebraists. The aim of this workshop is to bridge this divide, by giving an in-depth exposition of the techniques used in the proof of MIP*=RE, and highlighting perspectives on the MIP*=RE result from operator algebras and approximate representation theory. In particular, this workshop will highlight connections with group stability, something that has not been covered in previous workshops. In addition to increasing understanding of the MIP*=RE proof, we hope that this will open up further applications of the ideas behind MIP*=RE in operator algebras.
Keywords and Mathematics Subject Classification (MSC)