Mathematical Sciences Research Institute

Home » Workshop » Schedules » Monge-Ampère equations on quasi-projective varieties

Monge-Ampère equations on quasi-projective varieties

Connections for Women: Differential Geometry January 14, 2016 - January 15, 2016

January 14, 2016 (02:00 PM PST - 03:00 PM PST)
Speaker(s): Eleonora Di Nezza (Institut de Mathématiques de Jussieu)
Location: MSRI: Simons Auditorium
  • differential geometry

  • Manifolds

  • geodesic flow

  • curvature

  • compact Kahler manifold

  • Divisors

  • Monge-Ampere equation

Primary Mathematics Subject Classification
Secondary Mathematics Subject Classification No Secondary AMS MSC



We consider X a compact Kaehler manifold and D a divisor in X.  We study the regularity of solutions of degenerate complex Monge-Ampère equations where the right hand-side is smooth just outside D, establishing uniform a priori estimates which generalize both Yau's and Kolodziej's celebrated estimates.
This is a joint work with Hoang-Chinh Lu.

25478?type=thumb Di Nezza_Notes 144 KB application/pdf Download
Video/Audio Files


H.264 Video 14415.mp4 314 MB video/mp4 rtsp://videos.msri.org/data/000/025/233/original/14415.mp4 Download
Troubles with video?

Please report video problems to itsupport@msri.org.

See more of our Streaming videos on our main VMath Videos page.