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Classical Resonances

Let P be a compactly supported perturbation of the Laplacian, n ≥ 2, odd,
such that P = −∆ outside B(0, R). Assume the “black-box” conditions.
Typical example:

P = −∆g + V (x)

with Dirichlet or Neumann B.C. on the boundary of the obstacle O ⊂ B(0, R)
(can be empty).
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Classical Resonances

Let P be a compactly supported perturbation of the Laplacian, n ≥ 2, odd,
such that P = −∆ outside B(0, R). Assume the “black-box” conditions.
Typical example:

P = −∆g + V (x)

with Dirichlet or Neumann B.C. on the boundary of the obstacle O ⊂ B(0, R)
(can be empty).

Classical Resonances: Poles of the meromorphic continuation of the resolvent

χ(P − λ2)−1χ from =λ > 0 to C,

where χ is a cut-off, χ = 1 on B(0, R).

Also, they are poles of the scattering matrix S(λ) : L2(Sn−1) → L2(Sn−1).

Semi-classical Resonances

P (h) = −h2∆ outside B(0, R). S.C. Resonances: poles of

χ(P (h) − z)−1χ

from =z > 0 to a neighborhood of E0 > 0 in C. Scattering matrix S(z).
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Reference Operator P# (or P#(h)) on the “perturbed torus” containing
B(0, R).

N#(r) = {# of eigenvalues λ2 ≤ r2}
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Reference Operator P# (or P#(h)) on the “perturbed torus” containing
B(0, R).

N#(r) = {# of eigenvalues λ2 ≤ r2}

Assume
N#(r) ≤ C(r + 1)n#

, n# ≥ n.

In most interesting cases, n# = n.

Counting Function:

N(r) = {λ – resonance, |λ| ≤ r}.

Melrose, Sjöstrand, Zworski, Vodev, etc.:

N(r) ≤ Cn(r + 1)n, if n# = n,

N(r) ≤ CΦ(Cr), otherwise,

where N#(r) ≤ Φ(r).
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Reference Operator P# (or P#(h)) on the “perturbed torus” containing
B(0, R).

N#(r) = {# of eigenvalues λ2 ≤ r2}

Assume
N#(r) ≤ C(r + 1)n#

, n# ≥ n.

In most interesting cases, n# = n.

Counting Function:

N(r) = {λ – resonance, |λ| ≤ r}.

Melrose, Sjöstrand, Zworski, Vodev, etc.:

N(r) ≤ Cn(r + 1)n, if n# = n,

N(r) ≤ CΦ(Cr), otherwise,

where N#(r) ≤ Φ(r).

In S.C. case: N(Ω) = O(h−n#
), where Ω is a small neighborhood of E0 > 0.
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• How sharp are those estimates?
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• How sharp are those estimates?

• In particular, in N(r) ≤ Cn(r + 1)n,

Cn =?
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• How sharp are those estimates?

• In particular, in N(r) ≤ Cn(r + 1)n,

Cn =?

• Sharp estimates in various

neighborhoods of R?

3-b



O(|λ|−N ) (respectively O(hN )) close to the real axis

If P = −∆g + V in Rn, then for some N � 1, [S]

#Res(P ) ∩
{
1 ≤ |λ|; −=λ ≤ C|λ|−N

}
≤ Cnrn(1 + o(1))

with
Cn = 2(2π)−nvol(T ),

T being the trapped set in {p0(x, ξ) ≤ 1}. In a presence of an obstacle, N = ∞.
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O(|λ|−N ) (respectively O(hN )) close to the real axis

If P = −∆g + V in Rn, then for some N � 1, [S]

#Res(P ) ∩
{
1 ≤ |λ|; −=λ ≤ C|λ|−N

}
≤ Cnrn(1 + o(1))

with
Cn = 2(2π)−nvol(T ),

T being the trapped set in {p0(x, ξ) ≤ 1}. In a presence of an obstacle, N = ∞.

In the S.C. case,

#Res(P (h)) ∩ {0 < a ≤ <z ≤ b; 0 ≤ −=z ≤ Ch−N} ≤ Cnh−n(1 + o(1)),

with
Cn = (2π)−nvol

(
T ∩ p−1

0 [a, b]
)
,
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O(|λ|−N ) (respectively O(hN )) close to the real axis

If P = −∆g + V in Rn, then for some N � 1, [S]

#Res(P ) ∩
{
1 ≤ |λ|; −=λ ≤ C|λ|−N

}
≤ Cnrn(1 + o(1))

with
Cn = 2(2π)−nvol(T ),

T being the trapped set in {p0(x, ξ) ≤ 1}. In a presence of an obstacle, N = ∞.

In the S.C. case,

#Res(P (h)) ∩ {0 < a ≤ <z ≤ b; 0 ≤ −=z ≤ Ch−N} ≤ Cnh−n(1 + o(1)),

with
Cn = (2π)−nvol

(
T ∩ p−1

0 [a, b]
)
,

Those estimates are sharp in some cases (potential barrier).
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How do we prove it?
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(P − λ2)ku = 0, k = O(|λ|n
#
)

Then
(P − λ2)u = O(|λ|−∞)

and WF(u) = T .

Then choose P# to be s.a. with discrete spectrum, elliptic outside T .

“Close” to R, we have (semi-classical max principle)

1
dist(λ2, spec(Pθ))

≤ ‖(Pθ − λ2)−1‖ ≤ |λ|M

dist(λ2, spec(Pθ))

with M = M(n). . .
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How do we prove it?

For simplicity, N = ∞. Consider the resonant states u:

(P − λ2)ku = 0, k = O(|λ|n
#
)

Then
(P − λ2)u = O(|λ|−∞)

and WF(u) = T .

Then choose P# to be s.a. with discrete spectrum, elliptic outside T .

“Close” to R, we have (semi-classical max principle)

1
dist(λ2, spec(Pθ))

≤ ‖(Pθ − λ2)−1‖ ≤ |λ|M

dist(λ2, spec(Pθ))

with M = M(n). . . but there are still difficulties connected to the fact that the
resonant states are not asymptotically orthogonal, may cluster, etc.
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O(1) (respectively O(h)) close to the real axis

Sjöstrand: hyperbolic flow, additional assumptions:

Res(P (h)) ∩
{
[E1, E2] + i[−δ, 0]

}
≤ Ch−nδµ/2−ε,

where Ch ≤ δ ≤ 1/C and µ is the Minkowski codimension of T . If δ ∼ h, we
have

O(h−d/2−ε)

resonances with d = n − µ (the Minkowski dimension of T ).
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Resonances in sectors 0 ≤ − arg λ � 1

Sjöstrand, Zworski: Define P#
ε in an ε-neighborhood Kε of the convex hull

of the “black box” with Dirichlet B.C. Then

#Res(P ) ∩ {−θ < arg λ ≤ 0} ≤ 2(1 + Cε)N#
ε (r) + Cεrn,

where ε = θ2/7 and N#
ε (r) satisfies reasonable conditions.
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Resonances in sectors 0 ≤ − arg λ � 1

Sjöstrand, Zworski: Define P#
ε in an ε-neighborhood Kε of the convex hull

of the “black box” with Dirichlet B.C. Then

#Res(P ) ∩ {−θ < arg λ ≤ 0} ≤ 2(1 + Cε)N#
ε (r) + Cεrn,

where ε = θ2/7 and N#
ε (r) satisfies reasonable conditions.

Zerzeri: Kε might be an ε-neighborhood of the “black box” (no convexity)
but then we have to add 2(2π)−n× the measure of the “trapped rays” ×rn (not
the same as T above).
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Resonances in larger sectors 0 ≤ − arg λ < π/2 − δ (−=z = O(1))
Sjöstrand, Petkov-Zworski: “bottle theorem”

N#((1 − ε)r) − E−(r) ≤ Nδ(r) ≤ N#((1 + ε)r) + E+(r),

where
0 ≤ E±(r) ≤ C1εr

n#
+ C2(R0, ε)rn + . . . .

C1,2 independent of P ! In particular, if P depends on a parameter so that
N#(r)/rn � 1 (and n# = n), then we have almost an asymptotic formula! If
n# > n, i.e., if N#(r) dominates, (hypoelliptic operators), then we have true
asymptotics (Vodev, Sjöstrand, Petkov-Zworski).
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Resonances in larger sectors 0 ≤ − arg λ < π/2 − δ (−=z = O(1))
Sjöstrand, Petkov-Zworski: “bottle theorem”

N#((1 − ε)r) − E−(r) ≤ Nδ(r) ≤ N#((1 + ε)r) + E+(r),

where
0 ≤ E±(r) ≤ C1εr

n#
+ C2(R0, ε)rn + . . . .

C1,2 independent of P ! In particular, if P depends on a parameter so that
N#(r)/rn � 1 (and n# = n), then we have almost an asymptotic formula! If
n# > n, i.e., if N#(r) dominates, (hypoelliptic operators), then we have true
asymptotics (Vodev, Sjöstrand, Petkov-Zworski).

Seimi-classical version: Petkov-Zworski
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Resonances in a disk |λ| ≤ r

P = −∆ + V (r), suppV ⊂ [0, R]

Zworski:

N(r) ≤ CnRnrn, for r � 1,

where Cn depends on n only!
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V (R − 0) 6= 0,

then there is an asymptotic formula:
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Zworski:

N(r) ≤ CnRnrn, for r � 1,

where Cn depends on n only!

If
V (R − 0) 6= 0,

then there is an asymptotic formula:
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Black box in B(0, R), n# = n odd. Define the continuous functions

M(r) =
∫ r

0

N(t)
t

dt, M#(r) =
∫ r

0

N#(t)
t

dt.

Assume also that N#(r + 1) − N#(r) = O(rn−ε), with some ε ∈ (0, 1].
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∫ r

0

N(t)
t

dt, M#(r) =
∫ r

0

N#(t)
t

dt.

Assume also that N#(r + 1) − N#(r) = O(rn−ε), with some ε ∈ (0, 1].

Theorem 1 There exists Cn > 0 depending on the dimension only, such that

M(r) ≤ 2M#(r) + CnRnrn + o(rn). (1)

As a consequence, for any 0 < ε ≤ 1,

N(r) ≤ 2(1 + ε)N#((1 + ε)r) + CnRnrn/ε + oε(rn). (2)

10-a



Black box in B(0, R), n# = n odd. Define the continuous functions

M(r) =
∫ r

0

N(t)
t

dt, M#(r) =
∫ r

0

N#(t)
t

dt.

Assume also that N#(r + 1) − N#(r) = O(rn−ε), with some ε ∈ (0, 1].

Theorem 1 There exists Cn > 0 depending on the dimension only, such that

M(r) ≤ 2M#(r) + CnRnrn + o(rn). (1)

As a consequence, for any 0 < ε ≤ 1,

N(r) ≤ 2(1 + ε)N#((1 + ε)r) + CnRnrn/ε + oε(rn). (2)

If we know more about the regularity of N(r), then (1) is true for N(r) and
N#(r).
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The proof follows R. Froese (where P = −∆ + V ), and Petkov-Zworski

(semiclassical version). Denote s(λ) = scattering matrix, σ(λ) = scattering
phase.
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The proof follows R. Froese (where P = −∆ + V ), and Petkov-Zworski

(semiclassical version). Denote s(λ) = scattering matrix, σ(λ) = scattering
phase.

Lemma 1 For any r > 0 we have

M(r) = 2
∫ r

0

σ(t)
t

dt +
1
2π

∫ π

0

log |s(reiθ)| dθ.
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The proof follows R. Froese (where P = −∆ + V ), and Petkov-Zworski

(semiclassical version). Denote s(λ) = scattering matrix, σ(λ) = scattering
phase.

Lemma 1 For any r > 0 we have

M(r) = 2
∫ r

0

σ(t)
t

dt +
1
2π

∫ π

0

log |s(reiθ)| dθ.

Proof: Integrate along the semi-disk [−r, r] ∪ r exp(i[0, π]) using s′/s = 2πiσ′.

N(t) =
1

2πi

∮
s′(z)
s(z)

dz = = 1
2π

∮
s′(z)
s(z)

dz

=
∫ t

−t

σ′(z) dz +
1
2π

∫ π

0

t
d

dt
log |s(teiθ)|dθ

= 2σ(t) +
1
2π

∫ π

0

t
d

dt
log |s(teiθ)|dθ.

Divide by t and integrate to get the lemma.
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To estimate the scattering phase, we apply results by T. Christiansen to get

M(r) = 2
[
M#(r) − τn

rn

n

]
+

1
2π

∫ π

0

log |s(reiθ)| dθ + O(rn−ε),

with τn = (2π)−nVol(TR × B(0, 1)).
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To estimate the scattering phase, we apply results by T. Christiansen to get

M(r) = 2
[
M#(r) − τn

rn

n

]
+

1
2π

∫ π

0

log |s(reiθ)| dθ + O(rn−ε),

with τn = (2π)−nVol(TR × B(0, 1)).

To estimate the scattering determinant s(λ), we proceed in the usual way. The
scattering operator S(λ) is given by

S(λ) = I + cnλn−2E−(λ)[∆, χ2]R(λ)[∆, χ1] tE+(λ), (3)

where

[E±(λ)f ](ω) =
∫

e±iλω·xf(x) dx = f̂(∓λω), ω ∈ Sn−1,

and [∆, χj ], are supported in (R − δ, R).
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To estimate the scattering phase, we apply results by T. Christiansen to get

M(r) = 2
[
M#(r) − τn

rn

n

]
+

1
2π

∫ π

0

log |s(reiθ)| dθ + O(rn−ε),

with τn = (2π)−nVol(TR × B(0, 1)).

To estimate the scattering determinant s(λ), we proceed in the usual way. The
scattering operator S(λ) is given by

S(λ) = I + cnλn−2E−(λ)[∆, χ2]R(λ)[∆, χ1] tE+(λ), (3)

where

[E±(λ)f ](ω) =
∫

e±iλω·xf(x) dx = f̂(∓λω), ω ∈ Sn−1,

and [∆, χj ], are supported in (R − δ, R).

We estimate the characteristic values of the scattering amplitude which reduces
to an estimate of

∆m
θ eiλx·θ, |x| ≤ R.

We need to work here in a sector 0 < δ ≤ arg λ ≤ π − δ. Using a standard
argument, to cover the missing sectors 0 ≤ arg λ ≤ δ and π − δ ≤ arg λ ≤ π, we
use the fact that |s| = 1 on R and the Phragmen-Lindelöff principle.
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Modified estimate:

M(r) ≤ 2
[
M#(r) − τn

rn

n

]
+

1
n

CnRnrn + o(rn).
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Modified estimate:

M(r) ≤ 2
[
M#(r) − τn

rn

n

]
+

1
n

CnRnrn + o(rn).

Here

M#(r) − τn
rn

n
=





0, if P = −∆ + V ,

− 1
n (2π)−n

∫
x∈O, |ξ|≤1

dx dξ in obstacle scattering,
1
n (2π)−n

∫
|ξ|≤1

(
|g|1/2 − 1

)
dx dξ for P = −∆g.
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Modified modified estimate: Let P# be equal to P in B(0, R) with Dirichlet
B.C.
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Modified modified estimate: Let P# be equal to P in B(0, R) with Dirichlet
B.C.

Then
nM(r) ≤ 2nM#(r) + C ′

nRnrn + o(rn),

where C ′
n = Cn − (2π)−nvol(B(0, 1))2, and

nM#(r) =





(2π)−n
∫
|x|≤R,|ξ|≤1

dx dξ, if P = −∆ + V ,

(2π)−n
∫

x∈B(0,R)\O, |ξ|≤1
dx dξ in obstacle scattering,

(2π)−n
∫
|x|≤R,|ξ|≤1

|g|1/2dx dξ for P = −∆g.
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Modified modified estimate: Let P# be equal to P in B(0, R) with Dirichlet
B.C.

Then
nM(r) ≤ 2nM#(r) + C ′

nRnrn + o(rn),

where C ′
n = Cn − (2π)−nvol(B(0, 1))2, and

nM#(r) =





(2π)−n
∫
|x|≤R,|ξ|≤1

dx dξ, if P = −∆ + V ,

(2π)−n
∫

x∈B(0,R)\O, |ξ|≤1
dx dξ in obstacle scattering,

(2π)−n
∫
|x|≤R,|ξ|≤1

|g|1/2dx dξ for P = −∆g.

C ′
n =?
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Resonances of the unit sphere, Dirichlet B.C.

n = 3, resonances are the zeros of H
(1)
k+1/2(λ), k = 0, 1, . . .. Multiplicity = 2k +1.
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More of them:
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Olver: Asymptotically, the sphere resonances are given by

λk,s ∼ νζ−1
(
−ν− 2

3 e
iπ
3 as

)
, s = 1, 2, . . . , k; k = 1, 2, . . . ,

where ν = k + 1
2 , and ... < a2 < a2 < a1 < 0 are the zeros of Ai(s), and

2
3
ζ

3
2 (z) = log

(
1 +

√
1 − z2

z

)
−
√

1 − z2
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Olver: Asymptotically, the sphere resonances are given by

λk,s ∼ νζ−1
(
−ν− 2

3 e
iπ
3 as

)
, s = 1, 2, . . . , k; k = 1, 2, . . . ,

where ν = k + 1
2 , and ... < a2 < a2 < a1 < 0 are the zeros of Ai(s), and

2
3
ζ

3
2 (z) = log

(
1 +

√
1 − z2

z

)
−
√

1 − z2

λk,s for k = 16
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Define NS2(r) = #Res(P ) ∩ {|λ| < r}. We have

NS2(r) = CS2r3 + O(r2).
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Is CS2 equal to (2π)−3vol (B(0, 1) × B(0, 1)) = (2π)−3(4π/3)2?
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Define NS2(r) = #Res(P ) ∩ {|λ| < r}. We have

NS2(r) = CS2r3 + O(r2).

Is CS2 equal to (2π)−3vol (B(0, 1) × B(0, 1)) = (2π)−3(4π/3)2?

It should not be. . .

Numerically,
CS2 = (2π)−3(4π/3)242.595 . . .

(based on r = 50 and counting NS2(50) = 216 452 resonances).
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Define NS2(r) = #Res(P ) ∩ {|λ| < r}. We have

NS2(r) = CS2r3 + O(r2).

Is CS2 equal to (2π)−3vol (B(0, 1) × B(0, 1)) = (2π)−3(4π/3)2?

It should not be. . .

Numerically,
CS2 = (2π)−3(4π/3)242.595 . . .

(based on r = 50 and counting NS2(50) = 216 452 resonances).

CS2 can be expressed as a certain integral involving ζ−1.
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Resonances of P = −∆ + 1B(0,R), n = 3

Recall that there is an asymptotic (Zworski:) N(r) = CnRnrn + o(rn).

19



Resonances of P = −∆ + 1B(0,R), n = 3

Recall that there is an asymptotic (Zworski:) N(r) = CnRnrn + o(rn).

Resonances are the zeros of

λ1j
′
k (λ1)hk(λ) − λjk (λ1)h′

k(λ), λ1 :=
√

λ2 − 1,

where hk(λ) = h
(1)
k (λ) = λ−1/2Hk+ 1

2
(λ) and jk(λ) = λ−1/2Jk+ 1

2
(λ).
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Resonances are the zeros of
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k (λ1)hk(λ) − λjk (λ1)h′

k(λ), λ1 :=
√
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where hk(λ) = h
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2
(λ) and jk(λ) = λ−1/2Jk+ 1

2
(λ).
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For a fixed k, the resonances split into two goups: one that is close to the zeros
of jk(λ), and another one that is close to the zeros of hk(λ).
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For a fixed k, the resonances split into two goups: one that is close to the zeros
of jk(λ), and another one that is close to the zeros of hk(λ).

k = 6
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For a fixed k, the resonances split into two goups: one that is close to the zeros
of jk(λ), and another one that is close to the zeros of hk(λ).

k = 6

It appears that
N(r) = CBr3 + CS2r3 + o(r3),

where CB = (2π)−3vol(B(0, 1))2.
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For a fixed k, the resonances split into two goups: one that is close to the zeros
of jk(λ), and another one that is close to the zeros of hk(λ).

k = 6

It appears that
N(r) = CBr3 + CS2r3 + o(r3),

where CB = (2π)−3vol(B(0, 1))2.

So, at least in this case,
C ′

n = CSn−1
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What happens in the general case?
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What happens in the general case?

Let as above, P# be a reference operator equal to P in B(0, R) with Dirichlet
B.C. on ∂B(0, R).
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What happens in the general case?

Let as above, P# be a reference operator equal to P in B(0, R) with Dirichlet
B.C. on ∂B(0, R).

N(r)
?
≤ N#(r) + CSn−1Rnrn + o(rn).
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