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(can be empty).
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where x is a cut-off, x =1 on B(0, R).
Also, they are poles of the scattering matriz S(X\) : L*(S"~1) — L#(S™1).

Semi-classical Resonances

P(h) = —h?A outside B(0, R). S.C. Resonances: poles of

X(P(h) —2)"'x

from 2z > 0 to a neighborhood of Ey > 0 in C. Scattering matrix S(z).
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B(0,R).

N#(r) = {# of eigenvalues \? < 2}

Assume

N#(r) < C(r + 1)”#, n* >n.

In most interesting cases, n* = n.

Counting Function:
N(r) = {\ — resonance, |A| < r}.
Melrose, Sjostrand, Zworski, Vodev, etc.:

< Cp(r+1)", if n# = n,

< Co(Cr), otherwise,

where N7 (r) < ®(r).
In S.C. case: N(Q2) = O(h_”#), where (2 is a small neighborhood of Ey > 0.
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e Sharp estimates in various

neighborhoods of R7
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with
Cyp = 2(2m)" "vol(7T),
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#Res(P(h)N{0<a<Rz<b; 0< -2z < Ch N} <C,h~™(1 + 0(1)),

with
C, = (2m) " "vol (T Npg 'a, b]) :

Those estimates are sharp in some cases (potential barrier).
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How do we prove it?

For simplicity, N = co. Consider the resonant states wu:

(P —\2)u=0, k=0O(N"")

Then
(P —A%)u=O(AI™>)

and WF(u) =7.
Then choose P# to be s.a. with discrete spectrum, elliptic outside 7 .

“Close” to R, we have (semi-classical max principle)

1
dist(A?, spec(FPy))

—1” < P“M
— dist(A\?, spec(Fp))

< [[(Po =A%)

with M = M (n)...but there are still difficulties connected to the fact that the
resonant states are not asymptotically orthogonal, may cluster, etc.




O(1) close to the real axis

SJOSTRAND: hyperbolic flow, additional assumptions:

Res(P(h)) N {[E1, o] +i[-3,0] b < Ch"om/27,

where Ch < § < 1/C and p is the Minkowski codimension of 7. If § ~ h, we
have

O<h—d/2—e)

resonances with d = n — p (the Minkowski dimension of 7).
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SJOSTRAND, ZWORSKI: Define P# in an e-neighborhood K, of the convex hull

€

of the “black box” with Dirichlet B.C. Then

#Res(P) N {—0 < arg\ <0} < 2(1+ Ce)NZ(r) + Cer",

where € = 62/7 and N7 (r) satisfies reasonable conditions.
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€

of the “black box” with Dirichlet B.C. Then

#Res(P) N {—0 < arg\ <0} < 2(1+ Ce)NZ(r) + Cer",

where € = 62/7 and N7 (r) satisfies reasonable conditions.

ZERZERI: K. might be an e-neighborhood of the “black box” (no convexity)
but then we have to add 2(27) ™" x the measure of the “trapped rays” xr™ (not

the same as 7 above).




Resonances in larger sectors 0 < —arg\ < 7/2 — ¢

SJOSTRAND, PETKOV-ZWORSKI: “bottle theorem”
N#((1 = e)r) = E_(r) < Ns(r) < N7 ((1+ e)r) + Ey (r),

where

0< Ey(r) < Crer™ + Cy(Ro, )r™ + ...

(1 2 independent of P! In particular, if P depends on a parameter so that
N#(r)/r™ > 1 (and n¥ = n), then we have almost an asymptotic formula! If
n? > n, i.e., if N7 (r) dominates, (hypoelliptic operators), then we have true
asymptotics (VODEV, SIOSTRAND, PETKOV-ZWORSKI).
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PETKOV-ZWORSKI
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N#

N(t
M (r / dt M#(r
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Assume also that N7 (r +1) — N7 (r) = O(r”_‘f), with some € € (0, 1].

Theorem 1 There exists C,, > 0 depending on the dimension only, such that
M(r) < 2M#(r) + C, R"r™ + o(r").
As a consequence, for any 0 < e <1,

N(r) <2(14+e)N#((1+e)r) + C,R™r" /e + 0. (r™).
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Black box in B(0, R), n” = n odd. Define the continuous functions

N#

N(t
M (r / dt M#(r
+1

Assume also that N7 (r +1) — N7 (r) = O(r”_‘f), with some € € (0, 1].

Theorem 1 There exists C,, > 0 depending on the dimension only, such that
M(r) < 2M#(r) + C, R"r™ + o(r").
As a consequence, for any 0 < e <1,

N(r) <2(14+e)N#((1+e)r) + C,R™r" /e + 0. (r™).

If we know more about the regularity of N(r), then (1) is true for N(r) and
N7 (r).
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(semiclassical version). Denote s(\) = scattering matrix, o(A) = scattering

phase.

Lemma 1 For any r > 0 we have

"ot 1 T .
M(r) = 2/ ?dt + 2—/ log |s(re*?)| db.
0 T Jo

11-a



The proof follows R. FROESE (where P = —A + V'), and PETKOV-ZWORSKI
(semiclassical version). Denote s(\) = scattering matrix, o(A) = scattering

phase.

Lemma 1 For any r > 0 we have

"ot 1 T .
M(r) = 2/ #dt -+ 2—/ log |s(re*?)| db.
0 T Jo

Proof: Integrate along the semi-disk [—r, 7] Urexp(¢[0, w]) using s’ /s = 2wio’.

N(t) = 1,}1{5’(2)@ ~ gt %S,(Z>dz

2mi | s(2) o2r | s(2)

' 1 (7 d .
/J/(Z)dz+%A talog\s(tew)\dﬁ

—1

1 (" d -
20(t) + — | t— log|s(te")|dd.
o(t)+ 5= [t loglstre)

Divide by t and integrate to get the lemma.
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To estimate the scattering phase, we apply results by T'. CHRISTIANSEN to get

M(r) =2 [M#(r) - an L /OW log |s(ret®)| d + O(r™ ),

n 27

with 7, = (27)7"Vol(Txr x B(0,1)).
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M(r) =2 [M#('r) - Tnﬂ] L /OW log |s(ret®)| d + O(r™ ),

n 2T
with 7, = (27)7"Vol(Txr x B(0,1)).

To estimate the scattering determinant s(\), we proceed in the usual way. The

scattering operator S(\) is given by
S(A\) =T+ e X" ?E-(V[A, x2] RV[A, x1] "B (V), (3)

s (V) f](w) = / AT f () do = f(Fw), we S,
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n 2T
with 7, = (27)7"Vol(Txr x B(0,1)).

To estimate the scattering determinant s(\), we proceed in the usual way. The

scattering operator S(\) is given by
S(A\) =T+ e X" ?E-(V[A, x2] RV[A, x1] "B (V), (3)

s (V) f](w) = / AT f () do = f(Fw), we S,

and [A, x|, are supported in (R — 4, R).

We estimate the characteristic values of the scattering amplitude which reduces

to an estimate of
Amretr? | < R.

We need to work here in a sector 0 < 0 < arg A < 7 — ¢. Using a standard
argument, to cover the missing sectors 0 < argA <oand 7 — 90 < arg X <, we
use the fact that |s| = 1 on R and the Phragmen-Lindel6ff principle.
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Modified estimate:




Modified estimate:

if P=-A+V,

— 5 (2m)" fxeo’ e<1 dv dg in obstacle scattering,
L@2m)™ fiooy (I91Y/2 = 1) dwdg for P=—A,.
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Modified modified estimate: Let P# be equal to P in B(0, R) with Dirichlet
B.C.




Modified modified estimate: Let P# be equal to P in B(0, R) with Dirichlet
B.C.

Then
nM(r) < 2nM*(r) + C' R™r"™ + o(r™),
where C! = C,, — (2m) " "vol(B(0,1))?, and

’

(2

it _ —n
nM7(r) =4 (2m) fxEB(O,R)\O,|§|§1
2T i< re<a 9| 2dx dé for P = —A,.

dx d¢, ifP=—A+V,

) 7" Ja1<roje 1<

dx d¢ in obstacle scattering,
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B.C.
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nM(r) < 2nM*(r) + C' R™r"™ + o(r™),
where C! = C,, — (2m) " "vol(B(0,1))?, and

’

(2

it _ —n
nM7(r) =4 (2m) fxEB(O,R)\O,|§|§1
2T i< re<a 9| 2dx dé for P = —A,.

dx d¢, ifP=—A+V,

) 7" Ja1<roje 1<

dx d¢ in obstacle scattering,

/
C! =7
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Resonances of the unit sphere, Dirichlet B.C.

n = 3, resonances are the zeros of H,ii)l/Q()\), k=0,1,.... Multiplicity = 2k + 1.




More of them:
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OLVER: Asymptotically, the sphere resonances are given by

Mg ~ ¢ (—u—%e%”as), s=1.2,. .k k=12 ...

where v = k + %, and ... < as < as < a; < 0 are the zeros of Ai(s), and

C (z)—log<1+ 21_22>\/122




OLVER: Asymptotically, the sphere resonances are given by

Ak,swyg—l(—y— ' s=1.2... .k k=12 ..

where v = k + %, and ... < as < as < a; < 0 are the zeros of Ai(s), and

C (z)—log<1+ 21_22>\/122

Ak s for k =16
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Is C's2 equal to (27)3vol (B(0,1) x B(0,1)) = (27) 3 (47 /3)??
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Define Ngz2(7r) = #Res(P) N {|A| < r}. We have
Ngz2(r) = Cg2r® + O(r?).

Is Cs2 equal to (2m)3vol (B(0,1) x B(0,1)) = (2m)3(4m/3)??
It should not be. ..

Numerically,

Cg2 = (2m) 73 (47 /3)%42.595 . ..
(based on r = 50 and counting Ng2(50) = 216 452 resonances).

(g2 can be expressed as a certain integral involving ¢ 1.

18-d



Resonances of P = —A + 1), n =3

Recall that there is an asymptotic (ZWORSKI:) N(r) = C,R"r"™ 4+ o(r™).




Resonances of = —A + 1pg ), n =3

Recall that there is an asymptotic (ZWORSKI:) N(r) = C,, R"r™ + o(r™).

Resonances are the zeros of
A () BV = A M) B (A, Ar = VA2 — 1,
where hy,(A) = hi (\) = AV2H, () and jx(A) = A7V 0 (V).
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Resonances of = —A + 1pg ), n =3

Recall that there is an asymptotic (ZWORSKI:) N(r) = C,, R"r™ + o(r™).

Resonances are the zeros of
A () BV = A M) B (A, Ar = VA2 — 1,
where hy,(A) = hi (\) = AV2H, () and jx(A) = A7V 0 (V).

12 14 15
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For a fixed k, the resonances split into two goups: one that is close to the zeros

of ji(\), and another one that is close to the zeros of hy(\).




For a fixed k, the resonances split into two goups: one that is close to the zeros

of ji(\), and another one that is close to the zeros of hy(\).

I | S | R |

0
_1—;
_2—
3
4]
_5.2
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For a fixed k, the resonances split into two goups: one that is close to the zeros

of ji(\), and another one that is close to the zeros of hy(\).

I | R | " |

0
_1—;
_2—
3
4]
_5.2

k=6

It appears that
N(r) = Cpr’ + Cg21° + o(r?),

where Cg = (27)3vol(B(0, 1))2.
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For a fixed k, the resonances split into two goups: one that is close to the zeros

of ji(\), and another one that is close to the zeros of hy(\).

I | R | " |

0
_1—;
_2—
3
4]
_5.2

k=6

It appears that
N(r) = Cpr’ + Cg21° + o(r?),

where Cg = (27)3vol(B(0, 1))2.

So, at least in this case,

07/% — CSn—l
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What happens in the general case?




What happens in the general case?

Let as above, P be a reference operator equal to P in B(0, R) with Dirichlet
B.C. on 0B(0, R).
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What happens in the general case?

Let as above, P be a reference operator equal to P in B(0, R) with Dirichlet
B.C. on 0B(0, R).

{?

N(r) < N#(r) + Cgn-1 R™r™ + o(r™).
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