 View all upcoming workshops at MSRI
 MSRI Programmatic Workshops
 How to apply for workshops
 Resources for workshop attendees
 MSRI Policies for Program and Workshop Participants
MSRI Programmatic Workshops
MSRI welcomes registrations for our upcoming workshops, listed below. Established researchers, postdoctoral fellows, and graduate students are invited to apply for funding.
Most MSRI workshops are free of charge to attend, thanks to the support of the National Science Foundation and other institutional sponsors.
Programmatic Workshops related to MSRI's Scientific Programs fall into one of the following three categories:
INTRODUCTORY WORKSHOPS
Introductory workshops set the stage and provide the context for the scientific program, with the intended audience being researchers not in the program. This would include members in the other programs, members of the local mathematical community, and participants from outside the area selected especially for the workshop, particularly from groups underrepresented in research intensive contexts: women, minorities, mathematicians not located at research centers, and graduate students. In selecting participants, priority is given to these latter groups. Introductory Workshops have been effective in broadcasting the goals, ideas and techniques of a particular program to the mathematical public at large, as well as in bringing the MSRI community together as a whole.
CONNECTIONS WORKSHOPS
Connections Workshops have a long, successful history of encouraging earlycareer women and genderexpansive individuals in the profession. Held at the very beginning of semesterlong or yearlong programs at MSRI, these workshops have three overarching goals: (1) to give accessible introductions to the main themes of the program and exciting new directions in related research; (2) to provide participants the opportunity to become acquainted with the work of women in the field; and (3) to connect earlycareer researchers, especially women, genderexpansive individuals, and minorities, to potential senior mentors. A typical workshop consists of introductory lectures, presentations by postdoctoral researchers and graduate students, and a panel discussion addressing the challenges faced by all young researchers, but especially by women, in establishing a career in mathematics.
Throughout the workshops, special effort is made to foster mentoring relationships between established and earlycareer researchers at the lunches, dinners, and coffee breaks. Participants of the Connections Workshop are encouraged to stay for the following week for the Introductory Workshop to the semester’s program. The workshop organizers are also encouraged to propose weekend activities for small groups of women with similar research interests to discuss problems and perhaps to begin work on a joint research project (e.g. forming small research or study groups that would work on predetermined problems, read a paper, or leanr new techniques). As is the case for all MSRI workshops, registration to attend Connections workshop lectures is open to all interested persons.
TOPICAL WORKSHOPS
Directed toward the mathematical community at large, topical workshops are designed to interest and attract young researchers and other mathematicians active in the field.
 MSRI provides a yearly Hot Topics Workshop, to showcase what is new, innovative and interesting to the mathematical sciences community at the present time.
 The Critical Issues in Mathematics Education (CIME) workshop series offers an annual spring workshop designed to engage mathematicians, mathematics education researchers, and K12 teachers to learn about research and development efforts that can enhance their own work and about the contributions they can make to solving the challenges of mathematics education.
How to Apply
Use the calendar below to navigate to the specific workshop you are interested in attending. On the right side menu, you will see a Registration link. Follow the instructions to register for each workshop.
 ORCID ID: In order to register for most MSRI workshops, MSRI needs to collect your ORCID ID as required by the National Science Foundation, the primary funder of these workshops. ORCID is an independent nonprofit organization that provides a persistent identifier – an ORCID ID – that distinguishes you from other researchers and a mechanism for linking your research outputs and activities to your ID. ORCID is integrated into many systems used by publishers, funders, institutions, and other researchrelated services. Learn more and create an ORCID ID account at orcid.org. Questions? Contact coord@msri.org.
Resources for Workshop Attendees
Nursing Room: MSRI is pleased to be able to offer a private room for nursing parents.
Childcare Grants for Workshop Participants: As part of our dedication to supporting participation from all researchers in mathematics, we are excited to have generous donations from private funders that support childcare grants for parents who both identify as women and have children under the age of 15. Recipients of these funds can decide the best arrangement for themselves (e.g. support for companion caregivers or hired nannies here at Berkeley or to cover the costs of such help back at home) to ensure that their families are well cared for while they are able to focus on the workshop activities.
Please note that because these funds are taxable, they are available only to U.S. Citizens and Permanent Residents. All recipients will be required to submit a completed W9 upon their arrival at MSRI.
MSRI is unable to offer any onsite childcare services in Berkeley, nor are we able to make recommendations for child care providers. For convenience, participants looking for childcare resources may find the following links useful:
 Bananas offers free referrals to licensed childcare providers and provides information and resources to families with young children.
 Berkeley Parents Network is an iconic website where parents can look for and recommend childcare.
MSRI Policies for Program and Workshop Participants
Funding Opportunities: It is the policy of MSRI to actively support a diverse audience at these workshops. Thus, a strong effort is made to remove barriers that hinder equal opportunity, particularly for those groups that have been historically underrepresented in the mathematical sciences. Women, genderinclusive individuals, minorities, mathematicians not located at research centers, recent PhDs, and graduate students are particularly encouraged to apply for funding to attend.
MSRI Collegiality Statement: MSRI is committed to fostering an atmosphere of respect, collegiality, and sensitivity. Please view the complete statement here.
MSRI Anti Discrimination and Harassment Policy: MSRI is committed to providing a welcoming environment free from discrimination on the basis of race, color, creed, religion, sex, national origin, age, physical or mental disability, family care status, veteran status, marital status, sexual orientation, identification or expression. Likewise, the Institute will not tolerate harassment based on these characteristics, or any form of sexual harassment. Please view the complete statement here.
Current all workshops
Upcoming all workshops

ChernSimons and Other Topological Field Theories
Organizers: Stephon Alexander (Brown University), Fiona Burnell (University of Minnesota), David Eisenbud (MSRI  Mathematical Sciences Research Institute), Dan Freed (University of Texas, Austin), Joel Moore (University of California, Berkeley), John Morgan (Columbia University)The introduction of the ChernSimons differential form in 1972 catalyzed a remarkable series of developments across mathematics and physics, continuing to the present day.
The classical ChernSimons invariant provides an obstruction to immersing a 3manifold conformally into Euclidean 4space, while the quantum ChernSimons invariants in topological field theories gave rise to many new developments in knot theory. In physics, the ChernSimons action for gauge fields is widely discussed as an alternative or supplement to conventional Maxwell and Einstein theories. Topological field theories encode the fractional statistics of emergent anyon particles in condensed matter.
This workshop will cover the current state of the manifold areas in mathematics and physics in which ChernSimons and other topological field theories have had a dramatic impact, as well as their appearance in new areas ranging from integrability to number theory.
ShiingShen Chern, the founding Director of MSRI was born on October 28, 1911 in Jiaxing, China. We join the Chern Institute of Mathematics at Nankai University and the Yau Mathematical Sciences Center at Tsinghua University in celebrating Professor Chern's 110th Birthday, following Chinese tradition.
Updated on Sep 24, 2021 11:27 AM PDT 
Blackwell Tapia Conference 2021
Organizers: David Banks (Duke University), Hélène Barcelo (MSRI  Mathematical Sciences Research Institute), Lloyd Douglas, Robert Megginson (University of Michigan), Mariel Vazquez (University of California, Davis), Ulrica Wilson (Morehouse College; Institute for Computational and Experimental Research in Mathematics (ICERM))MSRI and the Mathematical Science Institutes Diversity Initiative (MSIDI) are pleased to announce that the 2021 BlackwellTapia Conference (rescheduled from Fall 2020), will be held simultaneously at four locations nationwide. The conference will celebrate the 2020 BlackwellTapia prize winner, Tatiana Toro (University of Washington), who has recently been announced as the next Director of MSRI, effective August 2022.
Choose from four host sites nationwide:
Mathematical Sciences Research Institute (MSRI): Berkeley, California
Institute for Pure and Applied Mathematics (IPAM): Los Angeles, California
Institute for Mathematical and Statistical Innovation (IMSI): Chicago, Illinois
Institute for Advanced Study (IAS): Princeton, New JerseyUpdated on Sep 02, 2021 08:26 AM PDT 
Connections Workshop: The Analysis and Geometry of Random Spaces
Organizers: Mario Bonk (University of California, Los Angeles), LEAD Joan Lind (University of Tennessee), Eero Saksman (University of Helsinki), JangMei Wu (University of Illinois at UrbanaChampaign)The Connections Workshop will feature talks on a variety of topics related to the analysis and geometry of random spaces. It will preview the research themes of the semester program and will highlight the work of women in the field. There will be a panel discussion as well as other social events. This workshop is directly prior to the Introductory Workshop, and participants are encouraged to participate in both workshops. This workshop is open to all mathematicians.
Updated on Mar 25, 2021 09:38 AM PDT 
Introductory Workshop: The Analysis and Geometry of Random Spaces
Organizers: LEAD Mario Bonk (University of California, Los Angeles), Joan Lind (University of Tennessee), Steffen Rohde (University of Washington), Fredrik Viklund (Royal Institute of Technology)This workshop will introduce some of the major themes in probability and geometric analysis that will be relevant for the semesterlong program. A series of short minicourses will give participants the opportunity to learn about important subjects such as the SchrammLoewner evolution (SLE) or the Gaussian free field (GFF), for example. The workshop will also include "visionary" lectures by prominent researchers who will outline fruitful directions for future research.
Updated on Oct 06, 2021 08:33 AM PDT 
Connections Workshop: Complex Dynamics  from special families to natural generalizations in one and several variables
Organizers: Núria Fagella (University of Barcelona), LEAD Tanya Firsova (Kansas State University), Thomas Gauthier (École Polytechnique), Sarah Koch (University of Michigan)This workshop will feature lectures on a variety of topics in complex dynamics, given by prominent researchers in the field, as well as presentations by younger participants. It precedes the introductory workshop and will preview the major research themes of the semester program. There will be a panel discussion focusing on issues particularly relevant to junior researchers, women, and minorities, as well as other social events. This workshop is open to all mathematicians.
Updated on Oct 11, 2021 01:43 PM PDT 
Introductory Workshop: Complex Dynamics  from special families to natural generalizations in one and several variables
Organizers: Anna Miriam Benini (Università di Parma), Fabrizio Bianchi (Université de Lille), Mikhail Hlushchanka (Universiteit Utrecht), LEAD Dylan Thurston (Indiana University)This workshop is built around four minicourses that will introduce the participants to a range of recent techniques in various areas of holomorphic dynamics, given by specialists in these topics. The event is complemented by a series of talks by leaders in the field, aimed at a large audience and presenting current research directions in the area.
Updated on Apr 29, 2021 04:22 PM PDT 
Hot Topics: Foundations of Stable, Generalizable and Transferable Statistical Learning
Organizers: LEAD Peter Bühlmann (ETH Zurich), John Duchi (Stanford University), Elizabeth Tipton (Northwestern University), Bin Yu (University of California, Berkeley)Despite the remarkable success in extracting information from complex and (often) largescale datasets over the last two decades, further progress is needed to making automated statistical and machine learning algorithms more reliable, robust, interpretable and trustworthy. This workshop has its focus on foundational aspects of this goal, linking areas at the interface between statistics, optimization, machine learning and computer science, such as distributional robustness and stability, adversarial and transfer learning, generalizability and meta analysis, and causality.
Updated on Sep 23, 2021 09:42 AM PDT 
Hot Topics: Regularity Theory for Minimal Surfaces and Mean Curvature Flow
Organizers: Christine Breiner (Fordham University), Otis Chodosh (Stanford University), Luca Spolaor (University of California, San Diego), Lu Wang (Yale University)This workshop will explore connections between the regularity theory of minimal surfaces and of mean curvature flow. Recent breakthroughs have improved our understanding of singularity formation in both settings but the current research trends are becoming increasingly disparate. Experts from both areas will present their research and there will be ample free time to establish connections between the topics.
Updated on Oct 13, 2021 08:42 AM PDT 
The Analysis and Geometry of Random Spaces
Organizers: Nikolai Makarov (California Institute of Technology), LEAD Steffen Rohde (University of Washington), Eero Saksman (University of Helsinki), Amanda Turner (University of Lancaster), Fredrik Viklund (Royal Institute of Technology), JangMei Wu (University of Illinois at UrbanaChampaign)The aim of this workshop is to bring together researchers whose work contributes to the study of random structures that exhibit some form of conformal selfsimilarity. Notable examples include the SchrammLoewner evolution SLE, the Brownian map and random trees, Liouville Quantum Gravity, and Conformal Field Theory. A particular focus will be the discussion of analytic tools needed to address the challenges arising from the often rough underlying sets and spaces.
Updated on Oct 11, 2021 01:11 PM PDT 
Adventurous Berkeley Complex Dynamics
Organizers: Mikhail Lyubich (State University of New York, Stony Brook), LEAD Jasmin Raissy (Institut de Mathématiques de Bordeaux), LEAD Roland Roeder (Indiana UniversityPurdue University), Dierk Schleicher (Université d'AixMarseille (AMU))This workshop will focus on complex dynamics in one and several variables. We will bring toghether experts in rational dynamics, transcendental dynamics, and dynamics in several complex variables in order to get new perspective and foster discussions in a warm and stimulating atmosphere. A special focus will be put on the interactions between one dimensional and higher dimensional complex dynamics, and on connections with adjacent areas of mathematics.
Updated on Feb 10, 2021 08:38 AM PST 
Integral Equations and Applications
Organizers: Fioralba Cakoni (Rutgers University), Dorina Mitrea (Baylor University), Irina Mitrea (Temple University), Shari Moskow (Drexel University)The field of Integral Equations has a long and distinguished history, being the driving force behind many fundamental developments in various areas of mathematics including Harmonic Analysis, Partial Differential Equations, Potential Theory, Scattering Theory, Functional Analysis, Complex Analysis, Operator Theory, Mathematical Physics and Numerical Analysis.
This school will:
 introduce graduate students to the systematic study of integral equations;
 present some of the latest theoretical advancements in the field and open problems; and
 involve participants in a handson discovery lab focused on deriving results about integral operators in two dimensions relevant for both the theoretical and numerical treatment of Integral Equations in two dimensions. The curriculum of this program will be accessible and will have a broad appeal to graduate students from a variety of mathematical areas (both theoretical and applied).
Updated on Sep 02, 2021 04:19 PM PDT 
MSRIUP 2022: Algebraic Methods in Mathematical Biology
Organizers: LEAD Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI  Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), Candice Price (Smith College), Anne Shiu (Texas A & M University)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
In 2022, MSRIUP will focus on Algebraic Methods in Mathematical Biology. The research program will be led by Dr. Anne Shiu, Associate Professor of Mathematics at Texas A&M University.
Updated on Aug 25, 2021 03:37 PM PDT 
New Directions in Representation Theory (AMSI, Brisbane, Australia)
Organizers: Angela Coughlin (Australian Mathematical Sciences Institute), Joseph Grotowski (University of Queensland), Tim Marchant (Australian Mathematical Sciences Institute), Ole Warnaar (University of Queensland), Geordie Williamson (University of Sydney)Representation Theory has undergone a revolution in recent years, with the development of what is now known as higher representation theory. In particular, the notion of categorification has led to the resolution of many problems previously considered to be intractable.
The school will begin by providing students with a brief but thorough introduction to what could be termed the “bread and butter of modern representation theory”, i.e., compact Lie groups and their representation theory; character theory; structure theory of algebraic groups.
We will then continue on to a number of more specialized topics. The final mix will depend on discussions with the prospective lecturers, but we envisage such topics as:
• modular representation theory of finite groups (blocks, defect groups, Broué’s conjecture);
• perverse sheaves and the geometric Satake correspondence;
• the representation theory of real Lie groups.
Updated on Sep 03, 2021 09:18 AM PDT 
Geometric Flows (Athens, Greece)
Organizers: Nicholas Alikakos (National and Kapodistrian University of Athens (University of Athens)), Panagiota Daskalopoulos (Columbia University)[The image on this vase from Minoan Crete, dated on 15002000 BC, resembles an ancient solution to the Curve shortening flow  one of the most basic geometric flows. The vase is at Heraklion Archaeological Museum]
This summer graduate school is a collaboration between MSRI and the FORTHIACM Institute in Crete. The purpose of the school is to introduce graduate students to some of the most important geometric evolution equations. Information about the location of the summer school can be found here.
This is an area of geometric analysis that lies at the interface of differential geometry and partial differential equations. The lectures will begin with an introduction to nonlinear diffusion equations and continue with classical results on the Ricci Flow, the Mean curvature flow and other fully nonlinear extrinsic flows such as the Gauss curvature flow. The lectures will also include geometric applications such as isoperimetric inequalities, topological applications such as the Poincaré onjecture, as well as recent important developments related to the study of singularities and ancient solutions.
Updated on Sep 03, 2021 09:08 AM PDT 
Random Graphs
Organizers: Louigi AddarioBerry (McGill University), Remco van der Hofstad (Technische Universiteit Eindhoven)The topic of random graphs is at the forefront of applied probability, and it is one of the central topics in multidisciplinary science where mathematical ideas are used to model and understand the real world. At the same time, random graphs pose challenging mathematical problems that have attracted the attention from probabilists and combinatorialists since the 1960, with the pioneering work of Erdös and Rényi. Around the turn of the millennium, very large data sets started to become available, and several applied disciplines started to realize that many realworld networks, even though they are from various different origins, share many fascinating features. In particular, many of such networks are small worlds, meaning that graph distances in them are typically quite small, and they are scalefree, in the sense that there are enormous differences in the number of connections that their elements make. In particular, such networks are quite different from the classical random graph models, such as proposed by Erdös and Rényi.
Updated on Sep 02, 2021 04:21 PM PDT 
Algebraic Theory of Differential and Difference Equations, Model Theory and their Applications
Organizers: LEAD Alexey Ovchinnikov (Queens College, CUNY), Anand Pillay (University of Notre Dame), Thomas Scanlon (University of California, Berkeley), Michael Wibmer (University of Notre Dame)The purpose of the summer school will be to introduce graduate students to effective methods in algebraic theories of differential and difference equations with emphasis on their modeltheoretic foundations and to demonstrate recent applications of these techniques to studying dynamic models arising in sciences. While these topics comprise a coherent and rich subject, they appear in graduate coursework in at best a piecemeal way, and then only as components of classes for other aims. With this Summer Graduate School, students will learn both the theoretical basis of differential and difference algebra and how to use these methods to solve practical problems. Beyond the lectures, the graduate students will meet daily in problem sessions and will participate in oneonone mentoring sessions with the lecturers and organizers.
Updated on Sep 02, 2021 04:25 PM PDT 
Metric Geometry and Geometric Analysis (Oxford, United Kingdom)
Organizers: LEAD Cornelia Drutu (University of Oxford), Panos Papazoglou (University of Oxford)The purpose of the summer school is to introduce graduate students to key mainstream directions in the recent development of geometry, which sprang from Riemannian Geometry in an attempt to use its methods in various contexts of nonsmooth geometry. This concerns recent developments in metric generalizations of the theory of nonpositively curved spaces and discretizations of methods in geometry, geometric measure theory and global analysis. The metric geometry perspective gave rise to new results and problems in Riemannian Geometry as well.
All these themes are intertwined and have developed either together or greatly influencing one another. The summer school will introduce some of the latest developments and the remaining open problems in these very modern areas, and will emphasize their synergy.
Updated on Sep 02, 2021 12:26 PM PDT 
Séminaire de Mathématiques Supérieures 2022: Floer Homotopy Theory
Organizers: Kristen Hendricks (Rutgers University), Ailsa Keating (University of Cambridge), Robert Lipshitz (University of Oregon), Liam Watson (University of British Columbia), Ben Williams (University of British Columbia)The idea of stable homotopy refinements of Floer homology was first introduced by Cohen, Jones, and Segal in a 1994 paper, but it was only in the last decade that this idea became a key tool in lowdimensional and symplectic topology. The two crowning achievements of these techniques so far are Manolescu's use of his Pin(2)equivariant SeibergWitten Floer homotopy type to resolve the Triangulation Conjecture and AbouzaidBlumberg's use of Floer homotopy theory and Morava Ktheory to prove the general Arnol'd Conjecture in finite characteristic. During this period, a range of related techniques, included under the umbrella of Floer homotopy theory, have also led to important advances, including involutive Heegaard Floer homology, Smith theory for Lagrangian intersections, homotopy coherence, and further connections between string topology and Floer theory. These in turn have sparked developments in algebraic topology, ranging from developments on Lie algebras in derived algebraic geometry to new computations of equivariant Mahowald invariants to new results on topological Hochschild homology.
The goal of the summer school is to provide participants the tools in symplectic geometry and stable homotopy theory required to work on Floer homotopy theory. Students will come away with a basic understanding of some of the key techniques, questions, and challenges in both of these fields. The summer school may be particularly valuable for participants with a solid understanding of one of the two fields who want to learn more about the other and the connections between them.Updated on Sep 10, 2021 11:11 AM PDT 
2022 Joint PCMI School: Number Theory Informed by Computation
Organizers: Jennifer Balakrishnan (Boston University), Rafe Mazzeo (Stanford University), Bjorn Poonen (Massachusetts Institute of Technology), Akshay Venkatesh (Institute for Advanced Study)The PCMI graduate summer school program in 2022 will consist of a sequence of 11 minicourses. The lecturers and topics for these minicourses are listed below. Each minicourse is accompanied by a problem session. The topics are arranged so that there is good material and opportunities for learning both for less experienced students as well as more advanced students. Beyond their attendance in these minicourse sessions, all graduate participants will be able to take part in the substantial other benefits of a PCMI session. This includes the opportunity to interact with the researchers in residence and take part in the research seminar component of PCMI. Many graduate students also interact in significant ways with the undergraduate cohort,,the undergraduate faculty cohort, and may also participate in the many pedagogically focused activities which form part of the K12 Teacher Leadership Program and the Workshop for Equity in Mathematics Education. PCMI includes numerous crossprogram activities to help members from all these groups interact with one another.
Updated on Sep 16, 2021 03:02 PM PDT 
Mathematics of Machine Learning (INdAM Joint School 2021)
Organizers: Sebastien Bubeck (Microsoft Research), Anna Karlin (University of Washington), Adith Swaminathan (Microsoft Research)Dates listed are a placeholder. Actual dates are to be determined.
Learning theory is a rich field at the intersection of statistics, probability, computer science, and optimization. Over the last decades the statistical learning approach has been successfully applied to many problems of great interest, such as bioinformatics, computer vision, speech processing, robotics, and information retrieval. These impressive successes relied crucially on the mathematical foundation of statistical learning.
Recently, deep neural networks have demonstrated stunning empirical results across many applications like vision, natural language processing, and reinforcement learning. The field is now booming with new mathematical problems, and in particular, the challenge of providing theoretical foundations for deep learning techniques is still largely open. On the other hand, learning theory already has a rich history, with many beautiful connections to various areas of mathematics (e.g., probability theory, high dimensional geometry, game theory). The purpose of the summer school is to introduce graduate students (and advanced undergraduates) to these foundational results, as well as to expose them to the new and exciting modern challenges that arise in deep learning and reinforcement learning.
Updated on Sep 03, 2021 11:31 AM PDT 
Recent Topics in Well Posedness (Taipei, Taiwan)
Organizers: Jungkai Chen (National Taiwan University), Yoshikazu Giga (University of Tokyo), Maria Schonbek (University of California, Santa Cruz), Tsuyoshi Yoneda (University of Tokyo)The purpose of the workshop is to introduce graduate students to fundamental results on the NavierStokes and the Euler equations, with special emphasis on the solvability of its initial value problem with rough initial data as well as the large time behavior of a solution. These topics have long research history. However, recent studies clarify the problems from a broad point of view, not only from analysis but also from detailed studies of orbit of the flow.
Updated on Sep 02, 2021 04:27 PM PDT 
Topological Methods for the Discrete Mathematician
Organizers: Pavle Blagojevic (Freie Universität Berlin), Florian Frick (Carnegie Mellon University), Shira Zerbib (Iowa State University)Recently, progress in the field of topological methods in discrete mathematics has been rapid and has generated a lot of activity with the resolution of major open problems, the emergence of new lines of inquiry, and the development of new tools. These exciting new developments have not been digested into a textbook treatment. The two main goals of this school are to:
 Provide graduate students with a thorough introduction to novel topological techniques and to a handful of their applications in the fields of combinatorics and discrete geometry with short glimpses into mathematical mechanics and algorithm complexity.
 Expose students to current research, and guide them in research on open problems in discrete mathematics using modern topological tools.
The summer school will lead participants from appealing, simpletostate problems at confluence of combinatorics, geometry, and topology to sophisticated topological methods that are required for their resolution. In recent years topological methods have found numerous novel applications in mathematics and beyond, such as in data science, machine learning, economics, the social sciences, and biology. The problems we will discuss are particularly wellsuited to rapidly put students in a position to approach related research questions.
Updated on Sep 07, 2021 09:52 AM PDT 
Sums of Squares Method in Geometry, Combinatorics and Optimization
Organizers: LEAD Grigoriy Blekherman (Georgia Institute of Technology), Annie Raymond (University of Massachusetts Amherst), Rekha Thomas (University of Washington)The study of nonnegative polynomials and sums of squares is a classical area of real algebraic geometry dating back to Hilbert’s 17th problem. It also has rich connections to real analysis via duality and moment problems. In the last 15 years, sums of squares relaxations have found a wide array of applications from very applied areas (e.g., robotics, computer vision, and machine learning) to theoretical applications (e.g., extremal combinatorics, theoretical computer science). Also, an intimate connection between sums of squares and classical algebraic geometry has been found. Work in this area requires a blend of ideas and techniques from algebraic geometry, convex geometry and representation theory. After an introduction to nonnegative polynomials, sums of squares and semidefinite optimization, we will focus on the following three topics:
 Sums of squares on real varieties (sets defined by real polynomial equations) and connections with classical algebraic geometry.
 Sums of squares method for proving graph density inequalities in extremal combinatorics. Here addition and multiplication take place in the gluing algebra of partially labelled graphs.
 Sums of squares relaxations for convex hulls of real varieties and thetabodies with applications in optimization.
The summer school will give a selfcontained introduction aimed at beginning graduate students, and introduce participants to the latest developments. In addition to attending the lectures, students will meet in intensive problem and discussion sessions that will explore and extend the topics developed in the lectures.
Updated on Sep 02, 2021 04:23 PM PDT 
Tropical Geometry
Organizers: Renzo Cavalieri (Colorado State University), Hannah Markwig (EberhardKarlsUniversität Tübingen), Dhruv Ranganathan (University of Cambridge)Enumerative geometry and the theory of moduli spaces of curves are two cornerstones of modern algebraic geometry; the two subjects have had a significant influence on each other. In the last 15 years, discrete and combinatorial methods, systematized within tropical geometry, have begun to provide new avenues of access into these two subjects. The goal of this summer school is to give students crash courses in tropical and logarithmic geometry, with a particular focus on the applications in enumerative geometry and moduli theory. The school will consist of three courses of seven lectures each:
 Enumeration of tropical curves/ by Hannah Markwig
 Curve counting in tropical and algebraic geometry by Renzo Cavalieri
 Logarithmic geometry and stable map/s by Dhruv Ranganathan
Updated on Sep 02, 2021 04:26 PM PDT 
Connections Workshop: Analytic and Geometric Aspects of Gauge Theory
Organizers: Lara Anderson (Virginia Polytechnic Institute and State University), Casey Kelleher (Princeton University), LEAD Laura Schaposnik (University of Illinois at Chicago)This twoday workshop will consist of various talks given by prominent female mathematicians on topics of analytic and geometric aspects of gauge theory. These will be appropriate for graduate students, postdocs, and researchers in areas related to the program. The meeting aims to support young researchers working in analytic and geometric aspects of gauge theory by facilitating mentoring from senior colleagues and helping towards the development of crucial professional skills. The format will include mentoring pairings, panel discussions, and Q&A sessions as well as the opportunity for informal discussions and connections.
Updated on Mar 22, 2021 09:08 AM PDT 
Introductory Workshop: Analytic and Geometric Aspects of Gauge Theory
Organizers: LEAD Aleksander Doan (State University of New York, Stony Brook), Laura Fredrickson (University of Oregon), Michael Singer (University College London)The workshop will highlight the utility and impact of gauge theory in other areas of math. Minicourses will cover the historical utility and impact of gauge theory in areas including lowdimensional topology, algebraic geometry, and the analysis of PDE; additional talks will cover more recent directions.
Updated on May 03, 2021 10:23 AM PDT 
Connections Workshop: Floer Homotopy Theory
Organizers: Teena Gerhardt (Michigan State University), LEAD Kristen Hendricks (Rutgers University), Ailsa Keating (University of Cambridge)This workshop will feature talks by experts in Floer theory (and its applications to lowdimensional topology) and homotopy theory. It will include two expository lectures aimed at graduate students and other researchers who are new to the field, as well as a sequence of research talks and a contributed talks session. There will also be a panel discussion focusing on professional development. The majority of the speakers and panelists for this event will be women and gender minorities, and members of these groups and of other underrepresented groups are especially encouraged to attend. This workshop is open to all mathematicians.
Updated on Aug 25, 2021 02:03 PM PDT 
Introductory Workshop: Floer Homotopy Theory
Organizers: Sheel Ganatra (University of Southern California), Tyler Lawson (University of Minnesota Twin Cities), LEAD Robert Lipshitz (University of Oregon), Nathalie Wahl (University of Copenhagen)Over the last decade, there has been a wealth of new applications of homotopytheoretic techniques to Floer homology in lowdimensional topology and symplectic geometry, including Manolescu’s disproof of the highdimensional Triangulation Conjecture and AbouzaidBlumberg’s proof of the Arnol’d Conjecture in finite characteristic. Conversely, results in Floer theory and categorification have opened new directions of research in homotopy theory, from string topology to SLie algebras. The goal of this workshop is to introduce researchers in Floer theory to modern techniques and questions in homotopy theory and, conversely, introduce researchers in homotopy theory to ideas underlying Floer theory and its applications.
Updated on Mar 10, 2021 09:12 AM PST 
New fourdimensional gauge theories
Organizers: Andriy Haydys (AlbertLudwigsUniversität Freiburg), Lotte Hollands (HeriotWatt University, Riccarton Campus), LEAD ElenyNicoleta Ionel (Stanford University), Richard Thomas (Imperial College, London), Thomas Walpuski (HumboldtUniversität)This workshop will bring together researchers working on new fourdimensional gauge theories from the perspectives of differential geometry, algebraic geometry, and physics. Over the last 25 years, physicists have made tantalizing conjectures relating the Vafa–Witten equation to modular forms and the Kapustin–Witten and Haydys–Witten equations to knot theory and the geometric Langlands programme. The analytical challenges in the way of establishing these predictions are now being pursued vigorously. More recently, algebraic geometers have had enormous success in confirming and refining Vafa–Witten's predictions for projective surfaces. The workshop will serve as a platform for reporting on recent progress and exchanging ideas in all of these areas, with the aim of strengthening existing and fostering new interactions.
Created on Mar 18, 2021 02:28 PM PDT 
Floer homotopical methods in low dimensional and symplectic topology
Organizers: LEAD Mohammed Abouzaid (Columbia University), Andrew Blumberg (Columbia University), Jennifer Hom (Georgia Institute of Technology), Emmy Murphy (Northwestern University), Sucharit Sarkar (University of California, Los Angeles)The workshop will focus on the interaction between homotopy theory and symplectic topology and low dimensional topology that is mediated by Floer theory. Among the topics covered are foundational questions, applications to concrete geometric questions, and the relationship with finite dimensional approaches.
Updated on Mar 18, 2021 02:21 PM PDT 
Connections Workshop: Algebraic Cycles, LValues, and Euler Systems
Organizers: Henri Darmon (McGill University), Ellen Eischen (University of Oregon), Benjamin Howard (Boston College), LEAD Elena Mantovan (California Institute of Technology)The Connections Workshop features presentations by both leading researchers and promising newcomers whose research has contact with the interrelated topics of algebraic cycles, Lvalues, and Euler systems. The goal is to present a variety of diverse results, so as to forge new connections, foster collaborative projects, and establish mentoring relationships. While emphasis will be placed on the work of women mathematicians, the workshop is open to all researchers.
Updated on Apr 09, 2021 09:14 AM PDT 
Introductory Workshop: Algebraic Cycles, LValues, and Euler Systems
Organizers: Henri Darmon (McGill University), LEAD Ellen Eischen (University of Oregon), Benjamin Howard (Boston College), Elena Mantovan (California Institute of Technology)The Introductory Workshop aims to provide a coherent overview of current research in algebraic cycles, Lvalues, Euler systems, and the many connections between them. This includes the study of special cycles on Shimura varieties and moduli spaces of shtukas, integral representations of Lvalues and the construction of padic Lfunctions, and the construction of Euler systems from special elements in Chow groups or higher Chow groups of Shimura varieties. Workshop lectures will be organized into short lecture series, so as to allow each series to begin with expository lectures on foundational results before moving on to current research.
Updated on Apr 12, 2021 10:18 AM PDT 
Shimura Varieties and Lfunctions
Organizers: Michael Harris (Columbia University), David Loeffler (University of Warwick), Elena Mantovan (California Institute of Technology), Christopher Skinner (Princeton University), Sarah Zerbes (University College London), LEAD Wei Zhang (Massachusetts Institute of Technology)The topical workshop will be dedicated to Shouwu Zhang, to mark the occasion of his 60th birthday, and to honour his numerous beautiful contributions to the theory of Shimura varieties and special values of Lfunctions. It will highlight cutting edge work on topics such as the construction of Euler systems; relations between special cycles on Shimura varieties and Lfunctions, such as generalized GrossZagier formulas and the Tate conjecture; the construction of Galois representations in cohomology; and related aspects of the theory of automorphic forms.
Updated on Aug 25, 2021 03:20 PM PDT 
MSRIUP 2023
Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI  Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), Candice Price (Smith College)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
Updated on Sep 16, 2021 09:02 AM PDT
Past all workshops

Workshop [HYBRID WORKSHOP] Integrable Structures in Random Matrix Theory and Beyond
Organizers: LEAD Jinho Baik (University of Michigan), Alexei Borodin (Massachusetts Institute of Technology), Tamara Grava (University of Bristol; International School for Advanced Studies (SISSA/ISAS)), Alexander Its (Indiana UniversityPurdue University), Sandrine Peche (Université de Paris VII (Denis Diderot))This will be a hybrid workshop with inperson participation by members of the semesterlong program. Online participation will be open to all who register. This workshop will focus on the integrable aspect of random matrix theory and other related probability models such as random tilings, directed polymers, and interacting particle systems. The emphasis is on communicating diverse algebraic structures in these areas which allow the asymptotic analysis possible. Some of such structures are determinantal point processes, Toeplitz and Hankel determinants, Bethe ansatz, YangBaxter equation, KarlinMcGregor formula, Macdonald process, and stochastic six vertex model.
Updated on Oct 06, 2021 08:15 AM PDT 
Workshop [HYBRID WORKSHOP] Connections and Introductory Workshop: Universality and Integrability in Random Matrix Theory and Interacting Particle Systems, Part 2
Organizers: Gérard Ben Arous (New York University, Courant Institute), Ioana Dumitriu (University of California, San Diego), Alice Guionnet (École Normale Supérieure de Lyon), Alisa Knizel (The University of Chicago), Sylvia Serfaty (New York University, Courant Institute), HorngTzer Yau (Harvard University)This will be a hybrid workshop with inperson participation by members of the semesterlong program. Online participation will be open to all who register.
This workshop aims at providing participants with an overview of some of the recent developments in the topics of the semester, with a particular emphasis on universality and applications. This includes universality for Wigner matrices and band matrices and quantum unique ergodicity, universality for beta ensembles and log/coulomb gases, KPZ universality class, universality in interacting particle systems, the connection between random matrices and number theory.
In addition, this workshop will also explore connections with other branches of mathematics and applications to sciences and engineering. The workshop will feature presentations by both leading researchers and promising newcomers. There will be some special activities originally planned for the Connections Workshop: We will have a panel discussion of topics relevant to junior researchers, women, and minorities; a poster session for students and recent PhDs; and other social events.
This workshop is open to and welcomes all mathematicians.
Updated on Aug 03, 2021 04:18 PM PDT 
Workshop [HYBRID WORKSHOP] Connections and Introductory Workshop: Universality and Integrability in Random Matrix Theory and Interacting Particle Systems, Part 1
Organizers: Gérard Ben Arous (New York University, Courant Institute), Ivan Corwin (Columbia University), Ioana Dumitriu (University of California, San Diego), Alice Guionnet (École Normale Supérieure de Lyon), Alisa Knizel (The University of Chicago), Sylvia Serfaty (New York University, Courant Institute), HorngTzer Yau (Harvard University)This will be a hybrid workshop with inperson participation by members of the semesterlong program. Online participation will be open to all who register. This workshop aims at providing participants with an overview of some of the recent developments in the topics of the semester, with a particular emphasis on universality and applications. This includes universality for Wigner matrices and band matrices and quantum unique ergodicity, universality for beta ensembles and log/coulomb gases, KPZ universality class, universality in interacting particle systems, the connection between random matrices and number theory.
Updated on Sep 29, 2021 09:49 AM PDT 
Summer Graduate School Foundations and Frontiers of Probabilistic Proofs (Virtual School)
Organizers: Alessandro Chiesa (University of California, Berkeley), Tom Gur (University of Warwick)Proofs are at the foundations of mathematics. Viewed through the lens of theoretical computer science, verifying the correctness of a mathematical proof is a fundamental computational task. Indeed, the P versus NP problem, which deals precisely with the complexity of proof verification, is one of the most important open problems in all of mathematics.
The complexitytheoretic study of proof verification has led to exciting reenvisionings of mathematical proofs. For example, probabilistically checkable proofs (PCPs) admit localtoglobal structure that allows verifying a proof by reading only a minuscule portion of it. As another example, interactive proofs allow for verification via a conversation between a prover and a verifier, instead of the traditional static sequence of logical statements. The study of such proof systems has drawn upon deep mathematical tools to derive numerous applications to the theory of computation and beyond.
In recent years, such probabilistic proofs received much attention due to a new motivation, delegation of computation, which is the emphasis of this summer school. This paradigm admits ultrafast protocols that allow one party to check the correctness of the computation performed by another, untrusted, party. These protocols have even been realized within recentlydeployed technology, for example, as part of cryptographic constructions known as succinct noninteractive arguments of knowledge (SNARKs).
This summer school will provide an introduction to the field of probabilistic proofs and the beautiful mathematics behind it, as well as prepare students for conducting cuttingedge research in this area.
Updated on Aug 11, 2021 12:27 PM PDT 
Summer Graduate School Random Conformal Geometry (Virtual School)
Organizers: Mario Bonk (University of California, Los Angeles), Steffen Rohde (University of Washington), LEAD Fredrik Viklund (Royal Institute of Technology)This Summer Graduate School will cover basic tools that are instrumental in Random Conformal Geometry (the investigation of analytic and geometric objects that arise from natural probabilistic constructions, often motivated by models in mathematical physics) and are at the foundation of the subsequent semesterlong program "The Analysis and Geometry of Random Spaces". Specific topics are Conformal Field Theory, Brownian Loops and related processes, Quasiconformal Maps, as well as Loewner Energy and Teichmüller Theory.
Updated on Mar 19, 2021 03:03 PM PDT 
Summer Graduate School Gauge Theory in Geometry and Topology (Virtual School)
Organizers: Lynn Heller (Universität Hannover), Francesco Lin (Columbia University), LEAD Laura Starkston (University of California, Davis), Boyu Zhang (Princeton University)Figure 1. A rotationally symmetric solution to the selfduality equations on an open and dense subset of the torus. Singularities appear where the surface intersects the ideal boundary at infinity of the hyperbolic 3space visualized by the wireframe.
Gauge theory is a geometric language used to formulate many fundamental physical phenomena, which has also had profound impact on our understanding of topology. The main idea is to study the space of solutions to partial differential equations admitting a very large group of local symmetries. Starting in the late 1970s, mathematicians began to unravel surprising connections between gauge theory and many aspects of geometric analysis, algebraic geometry and lowdimensional topology. This influence of gauge theory in geometry and topology is pervasive nowadays, and new developments continue to emerge.
The goal of the summer school is to introduce students to the foundational aspects of gauge theory, and explore their relations to geometric analysis and lowdimensional topology. By the end of the twoweek program, the students will understand the relevant analytic and geometric aspects of several partial differential equations of current interest (including the YangMills ASD equations, the SeibergWitten equations, and the Hitchin equations) and some of their most impactful applications to problems in geometry and topology.
Updated on Jun 28, 2021 12:06 PM PDT 
Summer Graduate School Mathematics of Big Data: Sketching and (Multi) Linear Algebra (Virtual School)
Organizers: LEAD Kenneth Clarkson (IBM Research Division), Lior Horesh (IBM Thomas J. Watson Research Center), Misha Kilmer (Tufts University), Tamara Kolda (Sandia National Laboratories; MathSci.ai), Shashanka Ubaru (IBM Thomas J. Watson Research Center)This summer school will introduce graduate students to sketchingbased approaches to computational linear and multilinear algebra. Sketching here refers to a set of techniques for compressing a matrix, to one with fewer rows, or columns, or entries, usually via various kinds of random linear maps. We will discuss matrix computations, tensor algebras, and such sketching techniques, together with their applications and analysis.
Updated on Mar 15, 2021 03:16 PM PDT 
MSRIUP MSRIUP 2021: Parking Functions: Choose your own adventure
Organizers: Federico Ardila (San Francisco State University), Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI  Mathematical Sciences Research Institute), LEAD Rebecca Garcia (Sam Houston State University), Pamela Harris (Williams College), Candice Price (Smith College)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
In 2021, MSRIUP will focus on Parking Functions: Choose your own adventure. The research program will be led by Dr. Pamela E. Harris, Associate Professor of Mathematics at Williams College.
Updated on Feb 05, 2021 01:42 PM PST 
Workshop [Online] Workshop on Mathematics and Racial Justice
Organizers: Caleb Ashley (Boston College), Ron Buckmire (Occidental College), Duane Cooper (Morehouse College), Monica Jackson (American University), LEAD Omayra Ortega (Sonoma State University), LEAD Robin Wilson (California State Polytechnic University, Pomona)The overarching goal of the Workshop on Mathematics and Racial Justice is to explore the role that mathematics plays in today’s movement for racial justice. For the purposes of this workshop, racial justice is the result of intentional, active and sustained antiracist practices that identify and dismantle racist structures and policies that operate to oppress, disenfranchise, harm, and devalue Black people. This workshop will bring together mathematicians, statisticians, computer scientists, and STEM educators as well as members of the general public interested in using the tools of these disciplines to critically examine and eradicate racial disparities in society. Researchers with expertise or interest in problems at the intersection of mathematics, statistics and racial justice are encouraged to participate. This workshop will take place over two weeks and will include sessions on Bias in Algorithms and Technology; Fair Division, Allocation, and Representation; Public Health Disparities; and Racial Inequities in Mathematics Education.
Updated on Sep 17, 2021 04:14 PM PDT 
Summer Graduate School Sparsity of Algebraic Points (Virtual School)
Organizers: Philipp Habegger (University of Basel), LEAD Hector Pasten (Pontificia Universidad Católica de Chile)The theory of Diophantine equations is understood today as the study of algebraic points in algebraic varieties, and it is often the case that algebraic points of arithmetic relevance are expected to be sparse.
This summer school will introduce the participants to two of the main techniques in the subject: (i) the filtration method to prove algebraic degeneracy of integral points by means of the subspace theorem, leading to special cases of conjectures by Bombieri, Lang, and Vojta, and (ii) unlikely intersections through ominimality and bialgebraic geometry, leading to results in the context of the ManinMumford conjecture, the AndréOort conjecture, and generalizations. This SGS should provide an entry point to a very active research area in modern number theory.
Updated on Mar 05, 2021 11:34 AM PST 
Summer Graduate School 2021 CRMPIMS Summer School in Probability (Virtual School)
Organizers: LEAD Louigi AddarioBerry (McGill University), Omer Angel (University of British Columbia), Alexander Fribergh (University of Montreal), Mathav Murugan (University of British Columbia), Edwin Perkins (University of British Columbia)The courses in this summer school focus on mathematical models of group dynamics, how to describe their dynamics and their scaling limits, and the connection to discrete and continuous optimization problems.
The phrase "group dynamics" is used loosely here  it may refer to species migration, the spread of a virus, or the propagation of electrons through an inhomogeneous medium, to name a few examples. Very commonly, such systems can be described via stochastic processes which approximately behave like the solution of an appropriate partial differential equation in the largepopulation limit.
Updated on Aug 09, 2021 02:04 PM PDT 
Workshop [Moved Online] Hot Topics: Topological Insights in Neuroscience
Organizers: Carina Curto (Pennsylvania State University), Chad Giusti (University of Delaware), LEAD Kathryn Hess (École Polytechnique Fédérale de Lausanne (EPFL)), Ran Levi (University of Aberdeen)This workshop will be held online May 47 and May 1011, 2021. The Zoom link will be provided at a later time. You must register for the workshop to receive the password. The workshop is held in Pacific Daylight Time.
The talks in this workshop will present a wide array of current applications of topology in neuroscience, including classification and synthesis of neuron morphologies, analysis of synaptic plasticity, algebraic analysis of the neural code, topological analysis of neural networks and their dynamics, topological decoding of neural activity, diagnosis of traumatic brain injuries, and topological biomarkers for psychiatric disease. Some of the talks will be devoted to promising new directions in algebraic topology that have been inspired by neuroscience.
Updated on May 04, 2021 08:37 AM PDT 
Summer Graduate School Séminaire de Mathématiques Supérieures 2021: Microlocal Analysis: Theory and Applications (Virtual School)
Organizers: Suresh Eswarathasan (Dalhousie University), Dmitry Jakobson (McGill University), Katya Krupchyk (University of California, Irvine), Stephane Nonnenmacher (Université de Paris XI)Microlocal analysis originated in the study of linear partial differential equations (PDEs) in the highfrequency regime, through a combination of ideas from Fourier analysis and classical Hamiltonian mechanics. In parallel, similar ideas and methods had been developed since the early times of quantum mechanics, the smallness of Planck’s constant allowing to use semiclassical methods. The junction between these two points of view (microlocal and semiclassical) only emerged in 1970s, and has taken its full place in the PDE community in the last 20 years. This methodology resulted in major advances in the understanding of linear and nonlinear PDEs in the last 50 years. Moreover, microlocal methods continue to find new applications in diverse areas of mathematical analysis, such as the spectral theory of nonselfadjoint operators, scattering theory, and inverse problems.
Updated on Aug 06, 2021 06:16 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2021: Initiating, Sustaining, and Researching Mathematics Department Transformation of Introductory Courses for STEM Majors
Organizers: Naneh Apkarian (Arizona State University), David Bressoud (Macalester College), Pamela Burdman (Just Equations), Jamylle Carter (Diablo Valley college), Ted Coe (Northwest Evaluation Association), Estrella Johnson (Virginia Polytechnic Institute and State University), W. Gary Martin (Auburn University), Michael O'Sullivan (San Diego State University), William Penuel (University of Colorado), LEAD Chris Rasmussen (San Diego State University), Daniel Reinholz (San Diego State University), Wendy Smith (University of Nebraska), David Webb (University of Colorado at Boulder)NOTE: The introductory sessions for this workshop will be held online the morning of April 29th. Additional sessions will be held when it is once again possible to meet in person. Times listed on schedule is in Pacfic Standard Time.
The world is changing, along with perceptions. Many call for the improvement of mathematics teaching and learning, for both citizenry and STEM preparation. To achieve sustainable change, though, the focus needs to extend from individuals to systems. It is not enough to change one classroom or one course. Transformation requires change at all levels: in teaching, programmatic practices, and institutions. This workshop will bring together teachers and researchers from universities, community colleges, and K12 schools to explore the reasons for and processes by which change in university mathematics departments is initiated, promoted, and sustained and lessons learned from change efforts in K12. It will review what we know about change at all levels and reflect on stories of failure and success.
Updated on Feb 22, 2021 09:57 AM PST 
Workshop [Moved Online] Recent Developments in Fluid Dynamics
Organizers: Thomas Alazard (Ecole Normale Supérieure ParisSaclay; Centre National de la Recherche Scientifique (CNRS)), Hajer Bahouri (Laboratoire JacquesLouis Lions; Centre National de la Recherche Scientifique (CNRS)), Mihaela Ifrim (University of WisconsinMadison), Igor Kukavica (University of Southern California), David Lannes (Institut de Mathématiques de Bordeaux; Centre National de la Recherche Scientifique (CNRS)), LEAD Daniel Tataru (University of California, Berkeley)The aim of the workshop is to bring together a broad array of researchers working on incompressible fluid dynamics. Some of the key topics to be covered are Euler flows, Navier Stokes equations as well as water wave flows and associated model equations. Some emphasis will also be placed on numerical analysis of the above evolutions.
Updated on Apr 27, 2021 08:35 AM PDT 
Workshop [Moved Online] Introductory Workshop: Mathematical problems in fluid dynamics
Organizers: Nicolas Burq (Université de Paris XI), AnneLaure Dalibard (Université de Paris VI (Pierre et Marie Curie)), Jean Marc Delort (Université de Paris XIII (ParisNord)), LEAD Mihaela Ifrim (University of WisconsinMadison), Irena Lasiecka (University of Memphis), Vladimir Sverak (University of Minnesota Twin Cities)This workshop will be held online. The Zoom link will be provided at a later time. You must register for the workshop to receive the password. The workshop is held in Pacific Standard Time.
The workshop will address topics in the PDE analysis of the basic equations of the incompressible fluid dynamics (the Euler equations for inviscid flows, the Navier Stokes equations for viscous flows), interface problems (water waves), and other related equations. Open problems and connections to related branches of mathematics will be discussed, including the phenomena of turbulence and the zero viscosity limit. Both theoretical and numerical aspects of these topics will be considered. There will be some colloquium style lectures as well as shorter research talks. The workshop is open to all.
Updated on Feb 01, 2021 09:03 AM PST 
Workshop [Moved Online] Connections Workshop: Mathematical problems in fluid dynamics
Organizers: Hajer Bahouri (Laboratoire JacquesLouis Lions; Centre National de la Recherche Scientifique (CNRS)), Juhi Jang (University of Southern California), LEAD Anna Mazzucato (Pennsylvania State University), Sijue Wu (University of Michigan)This workshop will be held online. The Zoom link will be provided at a later time. You must register for the workshop to receive the password. The workshop is held in Pacific Standard Time.
This workshop will feature talks by prominent female mathematicians whose research lies in and interfaces with mathematical fluids featuring water waves, free boundaries, fluid structures, viscous fluids and turbulence. The talks will be appropriate for graduate students, postdocs, and researchers in areas above mentioned. There will also be a panel discussion. This workshop is open to all mathematicians.
Updated on Nov 17, 2020 02:51 PM PST 
Workshop 2020 SACNAS – The National Diversity in STEM Conference
The largest multidisciplinary and multicultural STEM diversity event in the country, the SACNAS conference serves to equip, empower, and energize participants for their academic and professional paths in STEM.
For more information, click HERE.
Updated on Nov 23, 2020 09:36 AM PST 
Workshop Random and Arithmetic Structures in Topology: Introductory Workshop
Organizers: Martin Bridgeman (Boston College), Richard Canary (University of Michigan), Michelle Chu (University of Illinois at Chicago), Tommaso Cremaschi (University of Southern California), James Farre (Yale University), David Fisher (Indiana University)This Introductory workshop will take place virtually, over the course of three weeks. There will be two minicourses and two talks by MSRI Postdoctoral Fellows each week.
Created on Aug 14, 2020 01:46 PM PDT 
Workshop Mathematical Models for Prediction and Control of Epidemics (Virtual Workshop)
Organizers: Christian Borgs (University of California, Berkeley), Abba Gumel (Arizona State University), Maya Petersen (University of California, Berkeley), Amin Saberi (Stanford University), Katherine Yelick (University of California, Berkeley; Lawrence Berkeley Laboratory)The workshop will bring together researchers from epidemiology, global health, and mathematics to discuss challenges in developing predictive models for epidemics as well as policies and algorithmic solutions for their control and mitigation. It will thus give the mathematical community access to some of the challenging issues and mathematical problems in the field.
Updated on Aug 13, 2020 07:50 AM PDT 
Summer Graduate School Introduction to water waves [Virtual Summer Graduate School]
Organizers: Mihaela Ifrim (University of WisconsinMadison), Daniel Tataru (University of California, Berkeley)Due to the COVID19 pandemic, this summer school will be held online.
The purpose of this two weeks school is to introduce graduate students to the state of the art methods and results in the study of incompressible Euler’s equations in general, and water waves in particular. This is a research area which is highly relevant to many real life problems, and in which substantial progress has been made in the last decade.
The goal is to present the main current research directions in water waves. We will begin with the physical derivation of the equations, and present some of the analytic tools needed in study. The final goal will be twofold, namely (i) to understand the local solvability of the Cauchy problem for water waves, as well as (ii) to describe the long time behavior of solutions.
Through the lectures and associated problem sessions, students will learn about a number of new analysis tools which are not routinely taught in a graduate school curriculum. The goal is to help students acquire the knowledge needed in order to start research in water waves and Euler equations.
Updated on Feb 05, 2021 10:13 AM PST 
Summer Graduate School Séminaire de Mathématiques Supérieures 2020: Discrete Probability, Physics and Algorithms (Montréal, Canada) [Virtual Summer Graduate School]
Organizers: Gérard Ben Arous (New York University, Courant Institute), LEAD Alexander Fribergh (University of Montreal), Lea Popovic (Concordia University)Due to the COVID19 pandemic, this summer school will be held online.
Probability theory, statistics as well as mathematical physics have increasingly been used in computer science. The goal of this school is to provide a unique opportunity for graduate students and young researchers to developed multidisciplinary skills in a rapidly evolving area of mathematics.
The topics would include spin glasses, constraint satisfiability, randomized algorithms, MonteCarlo Markov chains and highdimensional statistics, sparse and random graphs, computational complexity, estimation and approximation algorithms. Those topics will fall into two main categories, on the one hand problems related to spin glasses and on the other hand random algorithms.
The part of the summer school dedicated to spin glasses will be split into three parts: an introductory course about traditional spin glasses followed by two more advanced courses where spin glasses meet computer science in addition to a talk on dynamics of spin glasses. The part of the summer school on random algorithms will consist of an introductory course on phase transitions in large random structures, followed by advanced courses on theoretical bounds for computational complexity in reconstruction and inference, and on understanding rare events in random graphs and models of statistical mechanics.
The two introductory courses on spin glasses and on random algorithms will be accompanied by three exercises sessions of one hour. A one hour exercises session will follow each of the three sessions of a course for both the introductory course on spin glasses and the introductory course on random algorithms. Exercises sessions will be led by an assistant, but will primarily focus on participation of the students.
Updated on May 26, 2020 12:21 PM PDT 
MSRIUP MSRIUP 2020: Branched Covers of Curves
Organizers: Federico Ardila (San Francisco State University), LEAD Duane Cooper (Morehouse College), Maria Franco (Queensborough Community College (CUNY); MSRI  Mathematical Sciences Research Institute), Rebecca Garcia (Sam Houston State University), Edray Goins (Pomona College), Suzanne Weekes (SIAM  Society of Industrial and Applied Mathematics)The MSRIUP summer program is designed to serve a diverse group of undergraduate students who would like to conduct research in the mathematical sciences.
In 2020, MSRIUp will focus on Branched Covers of Curves. The research program will be led by Dr. Edray Goins, Professor of Mathematics at Pomona College.
Updated on Jul 22, 2020 03:11 PM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
On May 22 portions of the Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools workshop will be streamed online via Zoom.
Friday 5/22: 12pm PST (3pm eastern time)
12:00  1:00
Rico Gutstein, Preparing Students Today for Whatever Tomorrow BringsUpdated on May 28, 2020 08:56 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
On May 15 portions of the Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools workshop will be streamed online via Zoom.
Friday 5/15: 12pm PST (3pm eastern time)
12:00  1:00
Dan Reinholz, Preparing teachers to notice, name, and disrupt racial and gender inequityUpdated on May 28, 2020 08:53 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
Friday 5/8: 12pm PST (3pm eastern time)
12:00  1:00
Nathan Alexander, Mathematical Models in the Sociological Imagination
Lincoln Chandler, Pursuing Racial Equity within SchoolsUpdated on May 12, 2020 08:42 AM PDT 
Workshop [Moved Online] Hot Topics: Optimal transport and applications to machine learning and statistics
Organizers: Luigi Ambrosio (Scuola Normale Superiore), Francis Bach (École Normale Supérieure; Institut National de Recherche en Informatique Automatique (INRIA)), LEAD Katy Craig (University of California, Santa Barbara), CarolaBibiane Schönlieb (University of Cambridge), Stefano Soatto (University of California, Los Angeles)This workshop will be held online. The link to join is: https://msri.zoom.us/j/
92457794010 . You must register for the workshop to receive the password. The workshop is held in Pacific Standard Time.Workshop Description:
The goal of the workshop is to explore the many emerging connections between the theory of Optimal Transport and models and algorithms currently used in the Machine Learning community. In particular, the use of Wasserstein metrics and the relation between discrete models and their continuous counterparts will be presented and discussed.Updated on Jul 13, 2020 01:43 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
Friday 5/01: 12pm PST (3pm eastern time)
12:00  1:00 Hyman Bass, 'Mathematics and Social Justice': An undergraduate course. What could this be?
Updated on May 12, 2020 08:41 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
Friday 4/24: 12pm PST (3pm eastern time)
12:00  1:00 Padmanabhan Seshaiyer, K12 to PostSecondary Viewpoint Critical Issues in Mathematics Education
Updated on May 12, 2020 08:41 AM PDT 
Workshop [Moved Online] Critical Issues in Mathematics Education 2020: Today’s Mathematics, Social Justice, and Implications for Schools
Organizers: Meredith Broussard (New York Unviersity), Victor Donnay (Bryn Mawr College), Courtney Ginsberg (Math for America), Luis Leyva (Vanderbilt University), Candice Price (Smith College), Chris Rasmussen (San Diego State University), LEAD Katherine Stevenson (California State University, Northridge), William Tate (Washington University in St. Louis)Due to the COVID19 virus outbreak, the Critical Issues in Mathematics Education 2020 workshop was held online. The full workshop description and list of talks can be found HERE.
Friday 4/17: 12pm PST (3pm eastern time)12:00  1:00 Some unintended consequences of active learning
Sage ForbesGray, Sunset Park High School, Brooklyn, NY, Mfa Master Teacher
Sharon Collins  New Heights Academy Charter School, NYC, MfA Master Teacher;
Kate Belin  Fannie Lou High School, NYC, MfA Master Teacher;Moderator: Courtney Ginsberg, MfA
Host: Katherine Stevenson, CSUNUpdated on May 12, 2020 08:41 AM PDT