Acknowledged as the premier center for collaborative mathematical research, MSRI organizes and hosts semesterlength (or yearlong) Programs that become the leading edge in that field of study. Mathematicians worldwide come to the Institute to engage in the research of classical fundamental mathematics, modern applied mathematics, statistics, computer science and other mathematical sciences.
MSRI invites the submission of proposals for fullyear or halfyear programs to be held at MSRI. Planning such programs is generally done about three years in advance. Except in extraordinary cases, a subject is the focus of a program not more than once in ten years.
Additional Resources
 Membership applications and deadlines
 Programrelated workshops (conferences) held at MSRI
 Submitting a proposal for a future Program
Current Programs

Simons Bridge Postdoctoral Fellowship 2021/22
Updated on Feb 10, 2022 10:34 AM PST 
Complementary Program 202122
The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program.
Updated on May 03, 2022 02:54 PM PDT 
The Analysis and Geometry of Random Spaces
Organizers: LEAD Mario Bonk (University of California, Los Angeles), Joan Lind (University of Tennessee), Steffen Rohde (University of Washington), Eero Saksman (University of Helsinki), Fredrik Viklund (Royal Institute of Technology), JangMei Wu (University of Illinois at UrbanaChampaign)This program is devoted to the investigation of universal analytic and geometric objects that arise from natural probabilistic constructions, often motivated by models in mathematical physics. Prominent examples for recent developments are the SchrammLoewner evolution, the continuum random tree, Bernoulli percolation on the integers, random surfaces produced by Liouville Quantum Gravity, and Jordan curves and dendrites obtained from random conformal weldings and laminations. The lack of regularity of these random structures often results in a failure of classical methods of analysis. One goal of this program is to enrich the analytic toolbox to better handle these rough structures.
Updated on Dec 21, 2021 12:37 PM PST 
Complex Dynamics: from special families to natural generalizations in one and several variables
Organizers: LEAD Sarah Koch (University of Michigan), Jasmin Raissy (Institut de Mathématiques de Bordeaux), Dierk Schleicher (Université d'AixMarseille (AMU)), Mitsuhiro Shishikura (Kyoto University), Dylan Thurston (Indiana University)Holomorphic dynamics is a vibrant field of mathematics that has seen profound progress over the past 40 years. It has numerous interconnections to other fields of mathematics and beyond.
Our semester will focus on three selected classes of dynamical systems: rational maps (postcritically finite and beyond); transcendental maps; and maps in several complex variables. We will put particular emphasis on the interactions between each these, and on connections with adjacent areas of mathematics.
Updated on Jan 20, 2022 09:31 AM PST
Upcoming Programs

Higher Categories and Categorification, Part Two
Organizers: David Ayala (Montana State University), Clark Barwick (University of Edinburgh), David Nadler (University of California, Berkeley), LEAD Emily Riehl (Johns Hopkins University), Marcy Robertson (University of Melbourne), Peter Teichner (MaxPlanckInstitut für Mathematik), Dominic Verity (Macquarie University)Though many of the ideas in higher category theory find their origins in homotopy theory — for instance as expressed by Grothendieck’s “homotopy hypothesis” — the subject today interacts with a broad spectrum of areas of mathematical research. Unforeseen descent, or localtoglobal formulas, for familiar objects can be articulated in terms of higher invertible morphisms. Compatible associative deformations of a sequence of maps of spaces, or derived schemes, can putatively be represented by higher categories, as Koszul duality for E_nalgebras suggests. Higher categories offer unforeseen characterizing universal properties for familiar constructions such as Ktheory. Manifold theory is natively connected to higher category theory and adjunction data, a connection that is most famously articulated by the recently proven Cobordism Hypothesis.
In parallel, the idea of "categorification'' is playing an increasing role in algebraic geometry, representation theory, mathematical physics, and manifold theory, and higher categorical structures also appear in the very foundations of mathematics in the form of univalent foundations and homotopy type theory. A central mission of this semester will be to mitigate the exorbitantly high "cost of admission'' for mathematicians in other areas of research who aim to apply higher categorical technology and to create opportunities for potent collaborations between mathematicians from these different fields and experts from within higher category theory.Updated on Feb 07, 2022 11:05 AM PST 
Definability, Decidability, and Computability in Number Theory, part 2
Organizers: Valentina Harizanov (George Washington University), Barry Mazur (Harvard University), Russell Miller (Queens College, CUNY; CUNY, Graduate Center), Jonathan Pila (University of Oxford), Thomas Scanlon (University of California, Berkeley), Alexandra Shlapentokh (East Carolina University)This program is focused on the twoway interaction of logical ideas and techniques, such as definability from model theory and decidability from computability theory, with fundamental problems in number theory. These include analogues of Hilbert's tenth problem, isolating properties of fields of algebraic numbers which relate to undecidability, decision problems around linear recurrence and algebraic differential equations, the relation of transcendence results and conjectures to decidability and decision problems, and some problems in anabelian geometry and field arithmetic. We are interested in this specific interface across a range of problems and so intend to build a semester which is both more topically focused and more mathematically broad than a typical MSRI program.
Updated on Dec 21, 2021 09:51 AM PST 
Simons Bridge Postdoctoral Fellowship 2022/23
Updated on Feb 10, 2022 10:34 AM PST 
Floer Homotopy Theory
Organizers: Mohammed Abouzaid (Columbia University), Andrew Blumberg (Columbia University), Kristen Hendricks (Rutgers University), Robert Lipshitz (University of Oregon), LEAD Ciprian Manolescu (Stanford University), Nathalie Wahl (University of Copenhagen)The development of Floer theory in its early years can be seen as a parallel to the emergence of algebraic topology in the first half of the 20th century, going from counting invariants to homology groups, and beyond that to the construction of algebraic structures on these homology groups and their underlying chain complexes. In continuing work that started in the latter part of the 20th century, algebraic topologists and homotopy theorists have developed deep methods for refining these constructions, motivated in large part by the application of understanding the classification of manifolds. The goal of this program is to relate these developments to Floer theory with the dual aims of (i) making progress in understanding symplectic and lowdimensional topology, and (ii) providing a new set of geometrically motivated questions in homotopy theory.
Updated on Oct 02, 2020 03:01 PM PDT 
Analytic and Geometric Aspects of Gauge Theory
Organizers: Laura Fredrickson (University of Oregon), Rafe Mazzeo (Stanford University), Tomasz Mrowka (Massachusetts Institute of Technology), Laura Schaposnik (University of Illinois at Chicago), LEAD Thomas Walpuski (HumboldtUniversität)The mathematics and physics around gauge theory have, since their first interaction in the mid 1970’s, prompted tremendous developments in both mathematics and physics. Deep and fundamental tools in partial differential equations have been developed to provide rigorous foundations for the mathematical study of gauge theories. This led to ongoing revolutions in the understanding of manifolds of dimensions 3 and 4 and presaged the development of symplectic topology. Ideas from quantum field theory have provided deep insights into new directions and conjectures on the structure of gauge theories and suggested many potential applications. The focus of this program will be those parts of gauge theory which hold promise for new applications to geometry and topology and require development of new analytic tools for their study.
Updated on Oct 28, 2020 09:12 AM PDT 
Complementary Program 202223
Updated on Feb 22, 2022 03:09 PM PST 
Algebraic Cycles, LValues, and Euler Systems
Organizers: Henri Darmon (McGill University), Ellen Eischen (University of Oregon), LEAD Benjamin Howard (Boston College), David Loeffler (University of Warwick), Christopher Skinner (Princeton University), Sarah Zerbes (ETH Zürich), Wei Zhang (Massachusetts Institute of Technology)The fundamental conjecture of Birch and SwinnertonDyer relating the Mordell–Weil ranks of elliptic curves to their Lfunctions is one of the most important and motivating problems in number theory. It resides at the heart of a collection of important conjectures (due especially to Deligne, Beilinson, Bloch and Kato) that connect values of Lfunctions and their leading terms to cycles and Galois cohomology groups.
The study of special algebraic cycles on Shimura varieties has led to progress in our understanding of these conjectures. The arithmetic intersection numbers and the padic regulators of special cycles are directly related to the values and derivatives of Lfunctions, as shown in the pioneering theorem of GrossZagier and its padic avatars for Heegner points on modular curves. The cohomology classes of special cycles (and related constructions such as Eisenstein classes) form the foundation of the theory of Euler systems, providing one of the most powerful methods known to prove vanishing or finiteness results for Selmer groups of Galois representations.
The goal of this semester is to bring together researchers working on different aspects of this young but fastdeveloping subject, and to make progress on understanding the mysterious relations between Lfunctions, Euler systems, and algebraic cycles.
Updated on Apr 12, 2021 10:17 AM PDT 
Diophantine Geometry
Organizers: Jennifer Balakrishnan (Boston University), Mirela Ciperiani (University of Texas, Austin), Philipp Habegger (University of Basel), Wei Ho (University of Michigan), LEAD Hector Pasten (Pontificia Universidad Católica de Chile), Yunqing Tang (Princeton University), ShouWu Zhang (Princeton University)While the study of rational solutions of diophantine equations initiated thousands of years ago, our knowledge on this subject has dramatically improved in recent years. Especially, we have witnessed spectacular progress in aspects such as height formulas and height bounds for algebraic points, automorphic methods, unlikely intersection problems, and nonabelian and padic approaches to algebraic degeneracy of rational points. All these groundbreaking advances in the study of rational and algebraic points in varieties will be the central theme of the semester program “Diophantine Geometry” at MSRI. The main purpose of this program is to bring together experts as well as enthusiastic young researchers to learn from each other, to initiate and continue collaborations, to update on recent breakthroughs, and to further advance the field by making progress on fundamental open problems and by developing further connections with other branches of mathematics. We trust that younger mathematicians will greatly contribute to the success of the program with their new ideas. It is our hope that this program will provide a unique opportunity for women and underrepresented groups to make outstanding contributions to the field, and we strongly encourage their participation.
Updated on Feb 25, 2021 04:59 PM PST 
Mathematics and Computer Science of Market and Mechanism Design
Organizers: Michal Feldman (TelAviv University), Nicole Immorlica (Microsoft Research), LEAD Scott Kominers (Harvard Business School), Shengwu Li (Harvard University), Paul Milgrom (Stanford University), Alvin Roth (Stanford University), Tim Roughgarden (Stanford University), Eva Tardos (Cornell University)In recent years, economists and computer scientists have collaborated with mathematicians, operations research experts, and practitioners to improve the design and operations of realworld marketplaces. Such work relies on robust feedback between theory and practice, inspiring new mathematics closely linked – and directly applicable – to market and mechanism design questions. This crossdisciplinary program seeks to expand the domains in which existing market design solutions can be applied; address foundational questions regarding our ways of developing and evaluating mechanisms; and build useful analytic frameworks for applying theory to practical marketplace design.
Updated on Feb 10, 2022 08:58 AM PST 
Algorithms, Fairness, and Equity
Organizers: Rediet Abebe (University of California, Berkeley), Vincent Conitzer (Duke University), Moon Duchin (Tufts University), Bettina Klaus (Université de Lausanne), Jonathan Mattingly (Duke University), LEAD Wesley Pegden (Carnegie Mellon University)This program aims to bring together researchers working at the interface of fairness and computation. This interface has been the site of intensive research effort in mechanism design, in research on partitioning problems related to political districting problems, and in research on ways to address issues of fairness and equity in the context of machine learning algorithms.
These areas each approach the relationship between mathematics and fairness from a distinct perspective. In mechanism design, algorithms are a tool to achieve outcomes with mathematical guarantees of various notions of fairness. In machine learning, we perceive failures of fairness as an undesirable side effect of learning approaches, and seek mathematical approaches to understand and mitigate these failures. And in partitioning problems like political districting, we often seek mathematical tools to evaluate the fairness of human decisions.
This program will explore progress in these areas while also providing a venue for overlapping perspectives. The topics workshop “Randomization, neutrality, and fairness” will explore the common role randomness and probability has played in these lines of work.
Updated on May 13, 2022 11:47 AM PDT 
Commutative Algebra
Organizers: Aldo Conca (Università di Genova), Steven Cutkosky (University of Missouri), LEAD Claudia Polini (University of Notre Dame), Claudiu Raicu (University of Notre Dame), Steven Sam (University of California, San Diego), Kevin Tucker (University of Illinois at Chicago), Claire Voisin (Collège de France; Institut de Mathématiques de Jussieu)Commutative algebra is, in its essence, the study of algebraic objects, such as rings and modules over them, arising from polynomials and integral numbers. It has numerous connections to other fields of mathematics including algebraic geometry, algebraic number theory, algebraic topology and algebraic combinatorics. Commutative Algebra has witnessed a number of spectacular developments in recent years, including the resolution of longstanding problems, with new techniques and perspectives leading to an extraordinary transformation in the field. The main focus of the program will be on these developments. These include the recent solution of Hochster's direct summand conjecture in mixed characteristic that employs the theory of perfectoid spaces, a new approach to the BuchsbaumEisenbudHorrocks conjecture on the Betti numbers of modules of finite length, recent progress on the study of CastelnuovoMumford regularity, the proof of Stillman's conjecture and ongoing work on its effectiveness, a novel strategy to Green's conjecture on the syzygies of canonical curves based on the study of Koszul modules and their generalizations, new developments in the study of various types of multiplicities, theoretical and computational aspects of Gröbner bases, and the implicitization problem for Rees algebras and its applications.
Updated on Oct 19, 2021 11:00 AM PDT 
NoncommutativeAlgebraic Geometry
Organizers: Wendy Lowen (Universiteit Antwerp), Alexander Perry (University of Michigan), LEAD Alexander Polishchuk (University of Oregon), Susan Sierra (University of Edinburgh), Spela Spenko (Université Libre de Bruxelles), Michel Van den Bergh (Universiteit Hasselt)Derived categories of coherent sheaves on algebraic varieties were originally conceived as technical tools for studying cohomology, but have since become central objects in fields ranging from algebraic geometry to mathematical physics, symplectic geometry, and representation theory. Noncommutative algebraic geometry is based on the idea that any category sufficiently similar to the derived category of a variety should be regarded as (the derived category of) a “noncommutative algebraic variety”; examples include semiorthogonal components of derived categories, categories of matrix factorizations, and derived categories of noncommutative dgalgebras. This perspective has led to progress on old problems, as well as surprising connections between seemingly unrelated areas. In recent years there have been great advances in this domain, including new tools for constructing semiorthogonal decompositions and derived equivalences, progress on conjectures relating birational geometry and singularities to derived categories, constructions of moduli spaces from noncommutative varieties, and instances of homological mirror symmetry for noncommutative varieties. The goal of this program is to explore and expand upon these developments.
Updated on Mar 02, 2022 12:08 PM PST
Past Programs

Program Universality and Integrability in Random Matrix Theory and Interacting Particle Systems
Organizers: LEAD Ivan Corwin (Columbia University), Percy Deift (New York University, Courant Institute), Ioana Dumitriu (University of California, San Diego), Alice Guionnet (École Normale Supérieure de Lyon), Alexander Its (Indiana UniversityPurdue University), Herbert Spohn (Technische Universität München), HorngTzer Yau (Harvard University)The past decade has seen tremendous progress in understanding the behavior of large random matrices and interacting particle systems. Complementary methods have emerged to prove universality of these behaviors, as well as to probe their precise nature using integrable, or exactly solvable models. This program seeks to reinforce and expand the fruitful interaction at the interface of these areas, as well as to showcase some of the important developments and applications of the past decade.
Updated on Aug 31, 2021 03:05 PM PDT 
Program Complementary Program 202021
The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program.
Updated on Jul 14, 2021 09:02 AM PDT 
Program Mathematical problems in fluid dynamics
Organizers: Thomas Alazard (Ecole Normale Supérieure ParisSaclay; Centre National de la Recherche Scientifique (CNRS)), Hajer Bahouri (Laboratoire JacquesLouis Lions; Centre National de la Recherche Scientifique (CNRS)), Mihaela Ifrim (University of WisconsinMadison), Igor Kukavica (University of Southern California), David Lannes (Institut de Mathématiques de Bordeaux; Centre National de la Recherche Scientifique (CNRS)), LEAD Daniel Tataru (University of California, Berkeley)All scientific activities in this program will be available online so that those who can't attend in person are able to participate. If you are not a member of the program and would like to participate in any of the online activities, please fill out this REGISTRATION FORM.
PROGRAM DESCRIPTION
Fluid dynamics is one of the classical areas of partial differential equations, and has been the subject of extensive research over hundreds of years. It is perhaps one of the most challenging and exciting fields of scientific pursuit simply because of the complexity of the subject and the endless breadth of applications.
The focus of the program is on incompressible fluids, where water is a primary example. The fundamental equations in this area are the wellknown Euler equations for inviscid fluids, and the NavierStokes equations for the viscous fluids. Relating the two is the problem of the zero viscosity limit, and its connection to the phenomena of turbulence. Water waves, or more generally interface problems in fluids, represent another target area for the program. Both theoretical and numerical aspects will be considered.
Updated on Mar 16, 2021 02:28 PM PDT 
Program Random and Arithmetic Structures in Topology  Virtual Semester
Organizers: Nicolas Bergeron (École Normale Supérieure), Jeffrey Brock (Yale University), Alexander Furman (University of Illinois at Chicago), Tsachik Gelander (Weizmann Institute of Science), Ursula Hamenstädt (Rheinische FriedrichWilhelmsUniversität Bonn), Fanny Kassel (Institut des Hautes Études Scientifiques (IHES)), LEAD Alan Reid (Rice University)Until further notice, the MSRI building will only be open to a small group of essential staff and members of the Fall 2020 scientific programs.
All scientific activities in this program will be available online so that those who can't attend in person are able to participate. If you are not a member of the program and would like to participate in any of the online activities, please fill out this REGISTRATION FORM.
Updated on Sep 21, 2020 04:57 PM PDT 
Program Decidability, definability and computability in number theory: Part 1  Virtual Semester
Organizers: LEAD Valentina Harizanov (George Washington University), Maryanthe Malliaris (University of Chicago), Barry Mazur (Harvard University), Russell Miller (Queens College, CUNY; CUNY, Graduate Center), Jonathan Pila (University of Oxford), Thomas Scanlon (University of California, Berkeley), LEAD Alexandra Shlapentokh (East Carolina University), Carlos Videla (Mount Royal University)Until further notice, the MSRI building will only be open to a small group of essential staff and members of the Fall 2020 scientific programs.
All scientific activities in this program will be available online so that those who can't attend in person are able to participate. If you are not a member of the program and would like to participate in any of the online activities, please fill out this REGISTRATION FORM.
Updated on Oct 29, 2020 10:47 AM PDT 
Program Quantum Symmetries
Organizers: Vaughan Jones (Vanderbilt University), LEAD Scott Morrison (Australian National University), Victor Ostrik (University of Oregon), Emily Peters (Loyola University), Eric Rowell (Texas A & M University), LEAD Noah Snyder (Indiana University), Chelsea Walton (Rice University)Symmetry, as formalized by group theory, is ubiquitous across mathematics and science. Classical examples include point groups in crystallography, Noether's theorem relating differentiable symmetries and conserved quantities, and the classification of fundamental particles according to irreducible representations of the Poincaré group and the internal symmetry groups of the standard model. However, in some quantum settings, the notion of a group is no longer enough to capture all symmetries. Important motivating examples include Galoislike symmetries of von Neumann algebras, anyonic particles in condensed matter physics, and deformations of universal enveloping algebras. The language of tensor categories provides a unified framework to discuss these notions of quantum symmetry.Updated on Jan 14, 2020 02:21 PM PST 
Program Higher Categories and Categorification
Organizers: David Ayala (Montana State University), Clark Barwick (University of Edinburgh), David Nadler (University of California, Berkeley), LEAD Emily Riehl (Johns Hopkins University), Marcy Robertson (University of Melbourne), Peter Teichner (MaxPlanckInstitut für Mathematik), Dominic Verity (Macquarie University)Though many of the ideas in higher category theory find their origins in homotopy theory — for instance as expressed by Grothendieck’s “homotopy hypothesis” — the subject today interacts with a broad spectrum of areas of mathematical research. Unforeseen descent, or localtoglobal formulas, for familiar objects can be articulated in terms of higher invertible morphisms. Compatible associative deformations of a sequence of maps of spaces, or derived schemes, can putatively be represented by higher categories, as Koszul duality for E_nalgebras suggests. Higher categories offer unforeseen characterizing universal properties for familiar constructions such as Ktheory. Manifold theory is natively connected to higher category theory and adjunction data, a connection that is most famously articulated by the recently proven Cobordism Hypothesis.
In parallel, the idea of "categorification'' is playing an increasing role in algebraic geometry, representation theory, mathematical physics, and manifold theory, and higher categorical structures also appear in the very foundations of mathematics in the form of univalent foundations and homotopy type theory. A central mission of this semester will be to mitigate the exorbitantly high "cost of admission'' for mathematicians in other areas of research who aim to apply higher categorical technology and to create opportunities for potent collaborations between mathematicians from these different fields and experts from within higher category theory.Updated on Jan 10, 2020 03:55 PM PST 
Program Complementary Program 201920
The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program.
Updated on Nov 27, 2018 12:28 PM PST 
Program Holomorphic Differentials in Mathematics and Physics
Organizers: LEAD Jayadev Athreya (University of Washington), Steven Bradlow (University of Illinois at UrbanaChampaign), Sergei Gukov (California Institute of Technology), Andrew Neitzke (Yale University), Anna Wienhard (RuprechtKarlsUniversität Heidelberg), Anton Zorich (Institut de Mathematiques de Jussieu)Holomorphic differentials on Riemann surfaces have long held a distinguished place in low dimensional geometry, dynamics and representation theory. Recently it has become apparent that they constitute a common feature of several other highly active areas of current research in mathematics and also at the interface with physics. In some cases the areas themselves (such as stability conditions on Fukayatype categories, links to quantum integrable systems, or the physically derived construction of socalled spectral networks) are new, while in others the novelty lies more in the role of the holomorphic differentials (for example in the study of billiards in polygons, special  Hitchin or higher Teichmuller  components of representation varieties, asymptotic properties of Higgs bundle moduli spaces, or in new interactions with algebraic geometry).
It is remarkable how widely scattered are the motivating questions in these areas, and how diverse are the backgrounds of the researchers pursuing them. Bringing together experts in this wide variety of fields to explore common interests and discover unexpected connections is the main goal of our program. Our program will be of interest to those working in many different elds, including lowdimensional dynamical systems (via the connection to billiards); differential geometry (Higgs bundles and related moduli spaces); and different types of theoretical physics (electron transport and supersymmetric quantum field theory).
Updated on Dec 13, 2019 10:03 AM PST 
Program Microlocal Analysis
Organizers: Pierre Albin (University of Illinois at UrbanaChampaign), Nalini Anantharaman (Université de Strasbourg), Kiril Datchev (Purdue University), Raluca Felea (Rochester Institute of Technology), Colin Guillarmou (Université ParisSaclay), LEAD Andras Vasy (Stanford University)Microlocal analysis provides tools for the precise analysis of problems arising in areas such as partial differential equations or integral geometry by working in the phase space, i.e. the cotangent bundle, of the underlying manifold. It has origins in areas such as quantum mechanics and hyperbolic equations, in addition to the development of a general PDE theory, and has expanded tremendously over the last 40 years to the analysis of singular spaces, integral geometry, nonlinear equations, scattering theory… This program will bring together researchers from various parts of the field to facilitate the transfer of ideas, and will also provide a comprehensive introduction to the field for postdocs and graduate students.
Updated on Apr 13, 2018 11:42 AM PDT 
Program 2019 African Diaspora Joint Mathematics Workshop (ADJOINT) program
Updated on Mar 21, 2019 01:22 PM PDT 
Program Complementary Program 201819
The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program.
Updated on Jun 03, 2019 10:25 AM PDT 
Program Derived Algebraic Geometry
Organizers: Julie Bergner (University of Virginia), LEAD Bhargav Bhatt (University of Michigan), Dennis Gaitsgory (Harvard University), David Nadler (University of California, Berkeley), Nick Rozenblyum (University of Chicago), Peter Scholze (Universität Bonn), Gabriele Vezzosi (Università di Firenze)Derived algebraic geometry is an extension of algebraic geometry that provides a convenient framework for directly treating nongeneric geometric situations (such as nontransverse intersections in intersection theory), in lieu of the more traditional perturbative approaches (such as the “moving” lemma). This direct approach, in addition to being conceptually satisfying, has the distinct advantage of preserving the symmetries of the situation, which makes it much more applicable. In particular, in recent years, such techniques have found applications in diverse areas of mathematics, ranging from arithmetic geometry, mathematical physics, geometric representation theory, and homotopy theory. This semester long program will be dedicated to exploring these directions further, and finding new connections.
Updated on Jan 02, 2019 03:00 PM PST 
Program Birational Geometry and Moduli Spaces
Organizers: Antonella Grassi (University of Pennsylvania), LEAD Christopher Hacon (University of Utah), Sándor Kovács (University of Washington), Mircea Mustaţă (University of Michigan), Martin Olsson (University of California, Berkeley)Birational Geometry and Moduli Spaces are two important areas of Algebraic Geometry that have recently witnessed a flurry of activity and substantial progress on many fundamental open questions. In this program we aim to bring together key researchers in these and related areas to highlight the recent exciting progress and to explore future avenues of research.This program will focus on the following themes: Geometry and Derived Categories, Birational Algebraic Geometry, Moduli Spaces of Stable Varieties, Geometry in Characteristic p>0, and Applications of Algebraic Geometry: Elliptic Fibrations of CalabiYau Varieties in Geometry, Arithmetic and the Physics of String TheoryUpdated on Jan 31, 2017 07:46 PM PST 
Program Hamiltonian systems, from topology to applications through analysis
Organizers: Rafael de la Llave (Georgia Institute of Technology), LEAD Albert Fathi (Georgia Institute of Technology; École Normale Supérieure de Lyon), vadim kaloshin (University of Maryland), Robert Littlejohn (University of California, Berkeley), Philip Morrison (University of Texas, Austin), Tere Seara (Polytechnical University of Cataluña (Barcelona)), Sergei Tabachnikov (Pennsylvania State University), Amie Wilkinson (University of Chicago)The interdisciplinary nature of Hamiltonian systems is deeply ingrained in its history. Therefore the program will bring together the communities of mathematicians with the community of practitioners, mainly engineers, physicists, and theoretical chemists who use Hamiltonian systems daily. The program will cover not only the mathematical aspects of Hamiltonian systems but also their applications, mainly in space mechanics, physics and chemistry.
The mathematical aspects comprise celestial mechanics, variational methods, relations with PDE, Arnold diffusion and computation. The applications concern celestial mechanics, astrodynamics, motion of satellites, plasma physics, accelerator physics, theoretical chemistry, and atomic physics.
The goal of the program is to bring to the forefront both the theoretical aspects and the applications, by making available for applications the latest theoretical developments, and also by nurturing the theoretical mathematical aspects with new problems that come from concrete problems of applications.
Updated on Aug 20, 2018 08:16 AM PDT 
Program Summer Research for Women in Mathematics
Organizers: Hélène Barcelo (MSRI  Mathematical Sciences Research Institute)See this LINK for the 2019 Summer Research for Women in Mathematics program.The purpose of the MSRI's program, Summer Research for Women in Mathematics, is to provide space and funds to groups of women mathematicians to work on a research project at MSRI. Research projects can arise from work initiated at a Women's Conference, or can be freestanding activities.Updated on Sep 11, 2018 01:32 PM PDT 
Program Complementary Program 201718
Updated on Nov 30, 2017 03:30 PM PST 
Program Group Representation Theory and Applications
Organizers: Robert Guralnick (University of Southern California), Alexander Kleshchev (University of Oregon), Gunter Malle (Universität Kaiserslautern), Gabriel Navarro (University of Valencia), Julia Pevtsova (University of Washington), Raphael Rouquier (University of California, Los Angeles), LEAD Pham Tiep (Rutgers University)Group Representation Theory is a central area of Algebra, with important and deep connections to areas as varied as topology, algebraic geometry, number theory, Lie theory, homological algebra, and mathematical physics. Born more than a century ago, the area still abounds with basic problems and fundamental conjectures, some of which have been open for over five decades. Very recent breakthroughs have led to the hope that some of these conjectures can finally be settled. In turn, recent results in group representation theory have helped achieve substantial progress in a vast number of applications.
The goal of the program is to investigate all these deep problems and the wealth of new results and directions, to obtain major progress in the area, and to explore further applications of group representation theory to other branches of mathematics.
Updated on Jan 12, 2018 04:00 PM PST 
Program Enumerative Geometry Beyond Numbers
Organizers: Mina Aganagic (University of California, Berkeley), Denis Auroux (University of California, Berkeley), Jim Bryan (University of British Columbia), LEAD Andrei Okounkov (Columbia University), Balazs Szendroi (University of Oxford)Traditional enumerative geometry asks certain questions to which the expected answer is a number: for instance, the number of lines incident with two points in the plane (1, Euclid), or the number of twisted cubic curves on a quintic threefold (317 206 375). It has however been recognized for some time that the numerics is often just the tip of the iceberg: a deeper exploration reveals interesting geometric, topological, representation, or knottheoretic structures. This semesterlong program will be devoted to these hidden structures behind enumerative invariants, concentrating on the core fields where these questions start: algebraic and symplectic geometry.
Updated on Jan 16, 2018 10:12 AM PST 
Program Geometric Functional Analysis and Applications
Organizers: Franck Barthe (Université de Toulouse III (Paul Sabatier)), Marianna Csornyei (University of Chicago), Boaz Klartag (Weizmann Institute of Science), Alexander Koldobsky (University of Missouri), Rafal Latala (University of Warsaw), LEAD Mark Rudelson (University of Michigan)Geometric functional analysis lies at the interface of convex geometry, functional analysis and probability. It has numerous applications ranging from geometry of numbers and random matrices in pure mathematics to geometric tomography and signal processing in engineering and numerical optimization and learning theory in computer science.
One of the directions of the program is classical convex geometry, with emphasis on connections with geometric tomography, the study of geometric properties of convex bodies based on information about their sections and projections. Methods of harmonic analysis play an important role here. A closely related direction is asymptotic geometric analysis studying geometric properties of high dimensional objects and normed spaces, especially asymptotics of their quantitative parameters as dimension tends to infinity. The main tools here are concentration of measure and related probabilistic results. Ideas developed in geometric functional analysis have led to progress in several areas of applied mathematics and computer science, including compressed sensing and random matrix methods. These applications as well as the problems coming from computer science will be also emphasised in our program.
Updated on Aug 23, 2017 03:38 PM PDT 
Program Geometric and Topological Combinatorics
Organizers: Jesus De Loera (University of California, Davis), Victor Reiner (University of Minnesota Twin Cities), LEAD Francisco Santos Leal (University of Cantabria), Francis Su (Harvey Mudd College), Rekha Thomas (University of Washington), Günter Ziegler (Freie Universität Berlin)Combinatorics is one of the fastest growing areas in contemporary Mathematics, and much of this growth is due to the connections and interactions with other areas of Mathematics. This program is devoted to the very vibrant and active area of interaction between Combinatorics with Geometry and Topology. That is, we focus on (1) the study of the combinatorial properties or structure of geometric and topological objects and (2) the development of geometric and topological techniques to answer combinatorial problems.
Key examples of geometric objects with intricate combinatorial structure are point configurations and matroids, hyperplane and subspace arrangements, polytopes and polyhedra, lattices, convex bodies, and sphere packings. Examples of topology in action answering combinatorial challenges are the by now classical Lovász’s solution of the Kneser conjecture, which yielded functorial approaches to graph coloring, and the more recent, extensive topological machinery leading to breakthroughs on Tverbergtype problems.Updated on Aug 28, 2017 11:26 AM PDT 
Program Summer Research 2017
Come spend time at MSRI in the summer! The Institute’s summer graduate schools and undergraduate program fill the lecture halls and some of the offices, but we have room for a modest number of visitors to come to do research singly or in small groups, while enjoying the excellent mathematical facilities, the great cultural opportunities of Berkeley, San Francisco and the Bay area, the gorgeous natural surroundings, and the cool weather.
We can provide offices, library facilities and bus passes—unfortunately not financial support. Though the auditoria are largely occupied, there are blackboards and ends of halls, so 26 people could comfortably collaborate with one another. We especially encourage such groups to apply together.
To make visits productive, we require at least a twoweek commitment. We strive for a wide mix of people, being sure to give special consideration to women, underrepresented groups, and researchers from nonresearch universities.
Updated on May 31, 2018 12:40 PM PDT 
Program Complementary Program (201617)
The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program.
Updated on Apr 14, 2017 10:04 AM PDT 
Program Analytic Number Theory
Organizers: Chantal David (Concordia University), Andrew Granville (Université de Montréal), Emmanuel Kowalski (ETH Zurich), Philippe Michel (École Polytechnique Fédérale de Lausanne (EPFL)), Kannan Soundararajan (Stanford University), LEAD Terence Tao (University of California, Los Angeles)Analytic number theory, and its applications and interactions, are currently experiencing intensive progress, in sometimes unexpected directions. In recent years, many important classical questions have seen spectacular advances based on new techniques; conversely, methods developed in analytic number theory have led to the solution of striking problems in other fields.
This program will not only give the leading researchers in the area further opportunities to work together, but more importantly give young people the occasion to learn about these topics, and to give them the tools to achieve the next breakthroughs.
Updated on Jul 10, 2015 03:54 PM PDT 
Program Harmonic Analysis
Organizers: LEAD Michael Christ (University of California, Berkeley), Allan Greenleaf (University of Rochester), Steven Hofmann (University of Missouri), LEAD Michael Lacey (Georgia Institute of Technology), Svitlana Mayboroda (University of Minnesota, Twin Cities), Betsy Stovall (University of WisconsinMadison), Brian Street (University of WisconsinMadison)The field of Harmonic Analysis dates back to the 19th century, and has its roots in the study of the decomposition of functions using Fourier series and the Fourier transform. In recent decades, the subject has undergone a rapid diversification and expansion, though the decomposition of functions and operators into simpler parts remains a central tool and theme.This program will bring together researchers representing the breadth of modern Harmonic Analysis and will seek to capitalize on and continue recent progress in four major directions:Restriction, Kakeya, and Geometric Incidence ProblemsAnalysis on Nonhomogeneous SpacesWeighted Norm InequalitiesQuantitative Rectifiability and Elliptic PDE.Many of these areas draw techniques from or have applications to other fields of mathematics, such as analytic number theory, partial differential equations, combinatorics, and geometric measure theory. In particular, we expect a lively interaction with the concurrent program.Updated on Aug 11, 2016 10:49 AM PDT 
Program Geometric Group Theory
Organizers: Ian Agol (University of California, Berkeley), Mladen Bestvina (University of Utah), Cornelia Drutu (University of Oxford), LEAD Mark Feighn (Rutgers University), Michah Sageev (TechnionIsrael Institute of Technology), Karen Vogtmann (University of Warwick)The field of geometric group theory emerged from Gromov’s insight that even mathematical objects such as groups, which are defined completely in algebraic terms, can be profitably viewed as geometric objects and studied with geometric techniques Contemporary geometric group theory has broadened its scope considerably, but retains this basic philosophy of reformulating in geometric terms problems from diverse areas of mathematics and then solving them with a variety of tools. The growing list of areas where this general approach has been successful includes lowdimensional topology, the theory of manifolds, algebraic topology, complex dynamics, combinatorial group theory, algebra, logic, the study of various classical families of groups, Riemannian geometry and representation theory.
The goals of this MSRI program are to bring together people from the various branches of the field in order to consolidate recent progress, chart new directions, and train the next generation of geometric group theorists.Updated on Aug 11, 2016 08:44 AM PDT 
Program Summer Research 2016
Come spend time at MSRI in the summer! The Institute’s summer graduate schools and undergraduate program fill the lecture halls and some of the offices, but we have room for a modest number of visitors to come to do research singly or in small groups, while enjoying the excellent mathematical facilities, the great cultural opportunities of Berkeley, San Francisco and the Bay area, the gorgeous natural surroundings, and the cool weather.
We can provide offices, library facilities and bus passes—unfortunately not financial support. Though the auditoria are largely occupied, there are blackboards and ends of halls, so 26 people could comfortably collaborate with one another. We especially encourage such groups to apply together.
To make visits productive, we require at least a twoweek commitment. We strive for a wide mix of people, being sure to give special consideration to women, underrepresented groups, and researchers from nonresearch universities.
Updated on Mar 22, 2016 11:58 AM PDT 
Program Complementary Program
Updated on Jul 13, 2016 09:06 AM PDT 
Program Differential Geometry
Organizers: Tobias Colding (Massachusetts Institute of Technology), Simon Donaldson (State University of New York, Stony Brook), John Lott (University of California, Berkeley), Natasa Sesum (Rutgers University), Gang Tian (Princeton University), LEAD Jeff Viaclovsky (University of WisconsinMadison)Differential geometry is a subject with both deep roots and recent advances. Many old problems in the field have recently been solved, such as the Poincaré and geometrization conjectures by Perelman, the quarter pinching conjecture by BrendleSchoen, the Lawson Conjecture by Brendle, and the Willmore Conjecture by MarquesNeves. The solutions of these problems have introduced a wealth of new techniques into the field. This semesterlong program will focus on the following main themes:
(1) Einstein metrics and generalizations,
(2) Complex differential geometry,
(3) Spaces with curvature bounded from below,
(4) Geometric flows,
and particularly on the deep connections between these areas.Updated on Oct 17, 2019 02:16 PM PDT 
Program New Challenges in PDE: Deterministic Dynamics and Randomness in High and Infinite Dimensional Systems
Organizers: Kay Kirkpatrick (University of Illinois at UrbanaChampaign), Yvan Martel (École Polytechnique), Jonathan Mattingly (Duke University), Andrea Nahmod (University of Massachusetts, Amherst), Pierre Raphael (Université Nice SophiaAntipolis), Luc ReyBellet (University of Massachusetts, Amherst), LEAD Gigliola Staffilani (Massachusetts Institute of Technology), Daniel Tataru (University of California, Berkeley)The fundamental aim of this program is to bring together a core group of mathematicians from the general communities of nonlinear dispersive and stochastic partial differential equations whose research contains an underlying and unifying problem: quantitatively analyzing the dynamics of solutions arising from the flows generated by deterministic and nondeterministic evolution differential equations, or dynamical evolution of large physical systems, and in various regimes.
In recent years there has been spectacular progress within both communities in the understanding of this common problem. The main efforts exercised, so far mostly in parallel, have generated an incredible number of deep results, that are not just beautiful mathematically, but are also important to understand the complex natural phenomena around us. Yet, many open questions and challenges remain ahead of us. Hosting the proposed program at MSRI would be the most effective venue to explore the specific questions at the core of the unifying theme and to have a focused and open exchange of ideas, connections and mathematical tools leading to potential new paradigms. This special program will undoubtedly produce new and fundamental results in both areas, and possibly be the start of a new generation of researchers comfortable on both languages.
Updated on Sep 15, 2015 05:25 PM PDT