Mathematical Sciences Research Institute

Home > Scientific > Current

Current Scientific Events

  1. Summer Research in Mathematics 2021 Summer Research in Mathematics

    Due to the COVID-19 pandemic, the 2020 Summer Research in Mathematics program was postponed to 2021 and held remotely.

    MSRI's Summer Research in Mathematics program provides space, funding, and the opportunity for in-person collaboration to small groups of mathematicians, especially women and gender-expansive individuals, whose ongoing research may have been disproportionately affected by various obstacles including family obligations, professional isolation, or access to funding. Through this effort, MSRI aims to mitigate the obstacles faced by these small groups, improve the odds of research project completion, and deepen their research experience.

    The ultimate goal of this program is to enhance the mathematical sciences as a whole by positively affecting the research and careers of all of its participants and assisting their efforts to maintain involvement in the research community.

    Updated on Sep 15, 2021 09:25 AM PDT
  2. Program Complementary Program 2021-22

    The Complementary Program has a limited number of memberships that are open to mathematicians whose interests are not closely related to the core programs; special consideration is given to mathematicians who are partners of an invited member of a core program.

    Updated on Jan 15, 2021 11:53 AM PST
  3. Program The Analysis and Geometry of Random Spaces

    Organizers: LEAD Mario Bonk (University of California, Los Angeles), Joan Lind (University of Tennessee), Steffen Rohde (University of Washington), Eero Saksman (University of Helsinki), Fredrik Viklund (Royal Institute of Technology), Jang-Mei Wu (University of Illinois at Urbana-Champaign)

    This program is devoted to the investigation of universal analytic and geometric objects that arise from natural probabilistic constructions, often motivated by models in mathematical physics. Prominent examples for recent developments are the Schramm-Loewner evolution, the continuum random tree, Bernoulli percolation on the integers,  random surfaces produced by Liouville Quantum Gravity, and Jordan curves and dendrites obtained from random conformal weldings and laminations. The lack of regularity of these random structures often results in a failure of classical methods of analysis. One goal of this program is to enrich the analytic toolbox to better handle these rough structures.

    Updated on Dec 21, 2021 12:37 PM PST
  4. Program Complex Dynamics: from special families to natural generalizations in one and several variables

    Organizers: LEAD Sarah Koch (University of Michigan), Jasmin Raissy (Institut de Mathématiques de Bordeaux), Dierk Schleicher (Université d'Aix-Marseille (AMU)), Mitsuhiro Shishikura (Kyoto University), Dylan Thurston (Indiana University)
    The mating of these two dendritic Julia sets is equal to the Julia set of a rational map of degree 2; that Julia set is equal to the entire Riemann sphere. Picture by Arnaud Chéritat

    Holomorphic dynamics is a vibrant field of mathematics that has seen profound progress over the past 40 years. It has numerous interconnections to other fields of mathematics and beyond. 

    Our semester will focus on three selected classes of dynamical systems: rational maps (postcritically finite and beyond); transcendental maps; and maps in several complex variables. We will put particular emphasis on the interactions between each these, and on connections with adjacent areas of mathematics. 

    Updated on Jan 20, 2022 09:31 AM PST
  5. Workshop [HYBRID WORKSHOP] Introductory Workshop: The Analysis and Geometry of Random Spaces

    Organizers: LEAD Mario Bonk (University of California, Los Angeles), Joan Lind (University of Tennessee), Steffen Rohde (University of Washington), Fredrik Viklund (Royal Institute of Technology)
    Interface for the critical Ising model, approaching an SLE curve in the scaling limit (image by Dr. Malin P. Forsström)

    This will be a hybrid workshop with in-person participation by members of the semester-long program. Online participation will be open to all who register. 

    This workshop will introduce some of the major themes in probability and geometric analysis that will be relevant for the semester-long program. A series of short mini-courses will give participants the opportunity to learn about important subjects such as the Schramm-Loewner evolution (SLE) or the Gaussian free field (GFF), for example. The workshop will also include "visionary" lectures by prominent researchers who will outline fruitful directions for future research.

    Updated on Dec 07, 2021 08:44 AM PST