Jul 18, 2022
Monday
|
09:30 AM - 10:30 AM
|
|
Lecture & Mini Course 1: Metric Geometry and Analysis on Boundaries of Gromov Hyperbolic Spaces, and Applications
Bruce Kleiner (New York University, Courant Institute)
|
- Location
- --
- Video
-
--
- Abstract
The minicourse will cover some aspects of metric and analytical structure on boundaries of Gromov hyperbolic spaces, applications to rigidity, and open problem.
Recommended preparatory reading:
(1) Quasi-isometries and the Milnor-Svarc lemma. Bridson-Haefliger I.8; Drutu-Kapovich
8.1-8.3.
(2) Gromov hyperbolic spaces: definitions, examples, Morse lemma on stability of
quasigeodesics, definition of the boundary. Bridson-Haefliger. III.H.1, III.H.3; Drutu-
Kapovich 11.1, 11.10, 11.11, 11.13.
(3) The theorems of Rademacher and Stepanov, Section 3 in Lectures on Lipschitz analysis,
Heinonen, available here:
http://www.math.jyu.fi/research/reports/rep100.pdf#page=18
- Supplements
-
--
|
|
Jul 19, 2022
Tuesday
|
09:30 AM - 10:30 AM
|
|
Lecture & Mini Course 1: Metric Geometry and Analysis on Boundaries of Gromov Hyperbolic Spaces, and Applications
Bruce Kleiner (New York University, Courant Institute)
|
- Location
- --
- Video
-
--
- Abstract
The minicourse will cover some aspects of metric and analytical structure on boundaries of Gromov hyperbolic spaces, applications to rigidity, and open problem.
Recommended preparatory reading:
(1) Quasi-isometries and the Milnor-Svarc lemma. Bridson-Haefliger I.8; Drutu-Kapovich
8.1-8.3.
(2) Gromov hyperbolic spaces: definitions, examples, Morse lemma on stability of
quasigeodesics, definition of the boundary. Bridson-Haefliger. III.H.1, III.H.3; Drutu-
Kapovich 11.1, 11.10, 11.11, 11.13.
(3) The theorems of Rademacher and Stepanov, Section 3 in Lectures on Lipschitz analysis,
Heinonen, available here:
http://www.math.jyu.fi/research/reports/rep100.pdf#page=18
- Supplements
-
--
|
|
Jul 20, 2022
Wednesday
|
09:30 AM - 10:30 AM
|
|
Lecture & Mini Course 1: Metric Geometry and Analysis on Boundaries of Gromov Hyperbolic Spaces, and Applications
Bruce Kleiner (New York University, Courant Institute)
|
- Location
- --
- Video
-
- Abstract
The minicourse will cover some aspects of metric and analytical structure on boundaries of Gromov hyperbolic spaces, applications to rigidity, and open problem.
Recommended preparatory reading:
(1) Quasi-isometries and the Milnor-Svarc lemma. Bridson-Haefliger I.8; Drutu-Kapovich
8.1-8.3.
(2) Gromov hyperbolic spaces: definitions, examples, Morse lemma on stability of
quasigeodesics, definition of the boundary. Bridson-Haefliger. III.H.1, III.H.3; Drutu-
Kapovich 11.1, 11.10, 11.11, 11.13.
(3) The theorems of Rademacher and Stepanov, Section 3 in Lectures on Lipschitz analysis,
Heinonen, available here:
http://www.math.jyu.fi/research/reports/rep100.pdf#page=18
- Supplements
-
--
|
|
Jul 21, 2022
Thursday
|
09:30 AM - 10:30 AM
|
|
Lecture & Mini Course 1: Metric Geometry and Analysis on Boundaries of Gromov Hyperbolic Spaces, and Applications
Bruce Kleiner (New York University, Courant Institute)
|
- Location
- --
- Video
-
- Abstract
The minicourse will cover some aspects of metric and analytical structure on boundaries of Gromov hyperbolic spaces, applications to rigidity, and open problem.
Recommended preparatory reading:
(1) Quasi-isometries and the Milnor-Svarc lemma. Bridson-Haefliger I.8; Drutu-Kapovich
8.1-8.3.
(2) Gromov hyperbolic spaces: definitions, examples, Morse lemma on stability of
quasigeodesics, definition of the boundary. Bridson-Haefliger. III.H.1, III.H.3; Drutu-
Kapovich 11.1, 11.10, 11.11, 11.13.
(3) The theorems of Rademacher and Stepanov, Section 3 in Lectures on Lipschitz analysis,
Heinonen, available here:
http://www.math.jyu.fi/research/reports/rep100.pdf#page=18
- Supplements
-
--
|
|
Jul 22, 2022
Friday
|
09:30 AM - 10:30 AM
|
|
Lecture & Mini Course 1: Metric Geometry and Analysis on Boundaries of Gromov Hyperbolic Spaces, and Applications
Bruce Kleiner (New York University, Courant Institute)
|
- Location
- --
- Video
-
- Abstract
The minicourse will cover some aspects of metric and analytical structure on boundaries of Gromov hyperbolic spaces, applications to rigidity, and open problem.
Recommended preparatory reading:
(1) Quasi-isometries and the Milnor-Svarc lemma. Bridson-Haefliger I.8; Drutu-Kapovich
8.1-8.3.
(2) Gromov hyperbolic spaces: definitions, examples, Morse lemma on stability of
quasigeodesics, definition of the boundary. Bridson-Haefliger. III.H.1, III.H.3; Drutu-
Kapovich 11.1, 11.10, 11.11, 11.13.
(3) The theorems of Rademacher and Stepanov, Section 3 in Lectures on Lipschitz analysis,
Heinonen, available here:
http://www.math.jyu.fi/research/reports/rep100.pdf#page=18
- Supplements
-
--
|
|